Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
ebd6fca
·
verified ·
1 Parent(s): 37e90db

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +21 -20
README.md CHANGED
@@ -2,19 +2,19 @@
2
  annotations_creators:
3
  - expert-annotated
4
  language:
5
- - pan
6
- - guj
7
- - kan
8
- - asm
9
- - ben
10
  - mar
 
 
 
 
11
  - bho
12
  - ory
13
  - san
14
- - tam
15
  - tur
16
- - ell
 
17
  - rus
 
18
  license: unknown
19
  multilinguality: translated
20
  task_categories:
@@ -270,11 +270,11 @@ configs:
270
 
271
  This is subset of 'XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding' with languages that were not part of the original XNLI plus three (verified) languages that are not strongly covered in MTEB
272
 
273
- | | |
274
- |----------------|---------------------------------------------|
275
- | Task category: | t2t |
276
- | Domains | Non-fiction, Fiction, Government, Written |
277
- | Reference | https://arxiv.org/pdf/2301.06527 |
278
 
279
 
280
  ## How to evaluate on this task
@@ -299,15 +299,16 @@ To learn more about how to run models on `mteb` task check out the [GitHub repit
299
  If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
300
 
301
  ```bibtex
 
302
  @inproceedings{upadhyay2023xnli,
303
- title={XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding (XLU)},
304
- author={Upadhyay, Ankit Kumar and Upadhya, Harsit Kumar},
305
- booktitle={2023 IEEE 8th International Conference for Convergence in Technology (I2CT)},
306
- pages={1--6},
307
- year={2023},
308
- organization={IEEE}
309
- }
310
-
311
 
312
  @article{enevoldsen2025mmtebmassivemultilingualtext,
313
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
 
2
  annotations_creators:
3
  - expert-annotated
4
  language:
 
 
 
 
 
5
  - mar
6
+ - ben
7
+ - tam
8
+ - asm
9
+ - ell
10
  - bho
11
  - ory
12
  - san
 
13
  - tur
14
+ - kan
15
+ - pan
16
  - rus
17
+ - guj
18
  license: unknown
19
  multilinguality: translated
20
  task_categories:
 
270
 
271
  This is subset of 'XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding' with languages that were not part of the original XNLI plus three (verified) languages that are not strongly covered in MTEB
272
 
273
+ | | |
274
+ |---------------|---------------------------------------------|
275
+ | Task category | t2t |
276
+ | Domains | Non-fiction, Fiction, Government, Written |
277
+ | Reference | https://arxiv.org/pdf/2301.06527 |
278
 
279
 
280
  ## How to evaluate on this task
 
299
  If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
300
 
301
  ```bibtex
302
+
303
  @inproceedings{upadhyay2023xnli,
304
+ author = {Upadhyay, Ankit Kumar and Upadhya, Harsit Kumar},
305
+ booktitle = {2023 IEEE 8th International Conference for Convergence in Technology (I2CT)},
306
+ organization = {IEEE},
307
+ pages = {1--6},
308
+ title = {XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding (XLU)},
309
+ year = {2023},
310
+ }
311
+
312
 
313
  @article{enevoldsen2025mmtebmassivemultilingualtext,
314
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},