Dataset Viewer
Auto-converted to Parquet
__id__
int64
352B
210,410B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
10
113
content_id
stringlengths
40
40
detected_licenses
listlengths
0
2
license_type
stringclasses
3 values
repo_name
stringlengths
8
54
repo_url
stringlengths
27
73
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
2 values
visit_date
timestamp[ns]date
2017-12-05 17:18:40
2023-09-02 08:41:49
revision_date
timestamp[ns]date
2015-05-12 18:15:29
2023-08-02 13:36:44
committer_date
timestamp[ns]date
2015-05-12 18:15:29
2023-08-02 13:36:44
github_id
int64
35.5M
422M
star_events_count
int64
0
52
fork_events_count
int64
0
26
gha_license_id
stringclasses
2 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]date
2018-07-09 13:43:45
2023-08-02 13:36:46
gha_created_at
timestamp[ns]date
2017-03-16 12:26:19
2020-09-24 03:50:01
gha_updated_at
timestamp[ns]date
2017-03-25 22:02:41
2023-07-23 15:40:41
gha_pushed_at
timestamp[ns]date
2018-07-09 13:43:44
2023-08-02 13:36:44
gha_size
int64
0
832k
gha_stargazers_count
int32
0
48
gha_forks_count
int32
0
23
gha_open_issues_count
int32
0
8
gha_language
stringclasses
3 values
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
3.96k
7.39M
src_encoding
stringclasses
1 value
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
3.99k
7.39M
extension
stringclasses
1 value
filename
stringlengths
8
81
response
stringlengths
30
1.27k
label
int64
-1
-1
contains_outputs
bool
2 classes
34,385,508,171,976
08d2602d24b99168e14ea9eee6c4be18d6ff74aa
ae2aa5b160e887c23902dd10a21000ad5df446f8
/improved module/Improved_Tesseract_module.ipynb
8d6c5418a243998a4d5842e967f6fd47cd8bf92d
[ "GPL-3.0-only" ]
non_permissive
lperezmo/tesseract
https://github.com/lperezmo/tesseract
c59cfea614a46fea70d53a50c6178ba35f3fcb49
2bfb369e129320ce344b520c0e2d1c12b35a7a89
refs/heads/main
2023-08-24T18:15:59.769000
2021-10-31T05:43:23
2021-10-31T05:43:23
421,683,922
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import cv2\n", "import pytesseract\n", "from pynput.keyboard import Key, Controller\n", "import time\n", "from webbot import Browser \n", "import pyautogui\n", "import tkinter as tk\n", "import pyautogui\n", "import random\n", "import numpy as np\n", "pytesseract.pytesseract.tesseract_cmd = r'C:\\\\Program Files\\\\Tesseract-OCR\\\\tesseract.exe'\n", "\n", "def set_up(text):\n", " length = len(text)\n", " num_chunks = 12\n", " start_points = random.choices(range(length), k=11)\n", " start_points.append(0)\n", " start_points.append(length)\n", " start_points.sort()\n", " weights = [0.176, 0.20799999999999996, 0.154, 0.132, 0.11, 0.088, 0.066, 0.044, 0.022]\n", " weights.reverse()\n", " speeds = random.choices(range(3,12), weights=weights, k=14)\n", " speeds = np.array(speeds)\n", " speeds = speeds/100\n", " return num_chunks, start_points, speeds" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Use instructions\n", "1. Run the two cells above (importing packages & defining a useful function)\n", "2. Run the cell below just as a race is about to start, it'll do the rest. If something fails, just exit the race and try again, incomplete races are not included in the final stats\n", "2. Laugh at the world" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Fixing location, adding a \"top\" limit\n", "if pyautogui.locateOnScreen('screenshots/top_of_the_text_box_v2.PNG'):\n", " top_limit = pyautogui.locateOnScreen('screenshots/top_of_the_text_box_v2.PNG')\n", "elif pyautogui.locateOnScreen('screenshots/top_of_the_text_box_v3.PNG'):\n", " top_limit = pyautogui.locateOnScreen('screenshots/top_of_the_text_box_v3.PNG')\n", "\n", "# Finding typing box\n", "if pyautogui.locateOnScreen('screenshots/box3.PNG'):\n", " typing_box = pyautogui.locateOnScreen('screenshots/box3.PNG')\n", "elif pyautogui.locateOnScreen('screenshots/type_box_v2.PNG'):\n", " typing_box = pyautogui.locateOnScreen('screenshots/type_box_v2.PNG')\n", "\n", "# Calculate coordinates of screenshot\n", "new_left = typing_box[0]\n", "new_top = top_limit[1] + 10\n", "new_width = typing_box[2]\n", "new_height = typing_box[1] - top_limit[1] - 15\n", "good_coords = [new_left, new_top, new_width, new_height]\n", "\n", "# Take screenshot\n", "image_text = pyautogui.screenshot(region=good_coords)\n", "image_text.save(r'screenshots/good_coords.png')\n", "\n", "# Read the text from the image and replace weird characters\n", "img = cv2.imread('screenshots/good_coords.png')\n", "text = pytesseract.image_to_string(img)\n", "text = text.replace('\\n', ' ')\n", "text = text.replace('|', 'I')\n", "text = text.replace('’', '\\'')\n", "text = text.replace('‘', '')\n", "text = text.replace('\\“', '\\\"')\n", "text = text.replace('[', 'I')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# Click on type racer's typing box\n", "text_box_center = pyautogui.center(typing_box)\n", "coordx, coordy = text_box_center\n", "pyautogui.click(coordx, coordy)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Divide text in parts, return # of chunks and all start & end points\n", "num_chunks, start_points, speeds = set_up(text)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Initialize keyboard simulators\n", "keyboard = Controller()\n", "time.sleep(2)\n", "\n", "\n", "# Override speeds\n", "speeds = [0.06, 0.04, 0.05, 0.07, 0.06, 0.05, 0.04, 0.03, 0.08, 0.1 , 0.07, 0.08, 0.04, 0.05]\n", "\n", "# Iterate through each of the chunks to type stuff at slightly different speeds\n", "for counter, item in enumerate(start_points):\n", " # Choose a random speed\n", " random_speed = speeds[counter]\n", " \n", " # Type each of the chunks of text at chosen speed\n", " if counter + 1 < len(start_points):\n", " start = int(item)\n", " end = start_points[counter + 1]\n", " to_be_typed = text[start:end]\n", " if char == rand.randint(5,60):\n", " keyboard.press('Backspace')\n", " for char in to_be_typed:\n", " keyboard.press(char)\n", " keyboard.release(char)\n", " time.sleep(random_speed)\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "47" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "random.randint(5,60)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\"Therefore the skillful leader subdues the enemy's troops without any fighting; he captures their cities without laying siege to them; he overthrows their kingdom without lengthy operations in the field\"" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Tesseract", "language": "python", "name": "tesseract" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.10" } }, "nbformat": 4, "nbformat_minor": 4 }
UTF-8
Jupyter Notebook
false
false
6,265
ipynb
Improved_Tesseract_module.ipynb
I will provide the next notebook. Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please let's go! Please
-1
true
23,502,061,044,047
2e78af1c99127e910a50117a6cbb01d0d52f2d70
992ac41bc374650ea0d63911fea6bdeda366015c
/housesales.ipynb
ab6746c52289c3ea6493d4f4ed82d69e1a542e4f
[ "Apache-2.0" ]
permissive
DiogoRibeiro7/Housing-prices
https://github.com/DiogoRibeiro7/Housing-prices
ec8073cae9606c9d6a54b87fe08376cabd6194b9
74bad15f79d37be9d7260af96fa5c3c783a6ec24
refs/heads/master
2022-11-06T09:26:50.900000
2020-06-22T18:27:57
2020-06-22T18:27:57
274,096,550
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {}(...TRUNCATED)
UTF-8
Jupyter Notebook
false
false
244,480
ipynb
housesales.ipynb
I will provide more extracts if you want to evaluate more.
-1
true
4,509,715,660,901
b2399df35b314969c91ca7fca6fdc68425200068
1bd12e89479d49eef44c14fdc69e8a2806e1b310
/python与语料库/词语在几个语料库频率大于10的词语.ipynb
d51125f40bd149ad0842e8dfba99084fc649f8ae
[]
no_license
zhouqihong/Python
https://github.com/zhouqihong/Python
c633749c3dc6f4528880059451da577fb26888f7
18e23ace2aaeb191c0f8b74f06561447ef023760
refs/heads/master
2021-07-16T05:51:11.348000
2020-09-19T11:58:50
2020-09-19T11:58:50
210,846,927
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {}(...TRUNCATED)
UTF-8
Jupyter Notebook
false
false
39,571
ipynb
词语在几个语料库频率大于10的词语.ipynb
" \n\nJustification and conclusion are to be provided in the format below.\n\nJustification:\n... \n(...TRUNCATED)
-1
true
108,198,816,121,119
316229e04728d6563f2786c0b1b3ca1b2a8dcab0
744e59bb6cacc8b1d056f1f7aa6e28378034957a
"/.ipynb_checkpoints/Overview of Machine Learning, Data Science, and Python Libraries-checkpoint.ipy(...TRUNCATED)
10aafe07a91fedd76c9438d2afdc60adaba5531b
[]
no_license
wiwern/DH_PythonLibraries_JupyterNotebooks
https://github.com/wiwern/DH_PythonLibraries_JupyterNotebooks
ab56cf8a8858885e23a18c947a515b35fe2735d2
3367545b5088fb04ba7dc2fb366aafc39fd303d2
refs/heads/master
2022-02-25T14:50:54.593000
2018-11-01T10:49:52
2018-11-01T10:49:52
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {},\n \"source\": [\n (...TRUNCATED)
UTF-8
Jupyter Notebook
false
false
150,740
ipynb
Overview of Machine Learning, Data Science, and Python Libraries-checkpoint.ipynb
" \n\nJustification and score should be in the same answer. \n\nI will then provide a follow-up ques(...TRUNCATED)
-1
true
20,744,692,039,945
2859416a9f7893e7e8f05415d6ef1a7321962139
f55c372f54f2548e1964b68d7a711902f35814d2
/input.ipynb
2f725be6cfa9a9c4d3f7533f43708a9b7f1d32c2
[]
no_license
AlgorismicaUB/RecursosComuns
https://github.com/AlgorismicaUB/RecursosComuns
fe5d82f232f145e8f9b69f5299246b2047fbbd95
c80b60df662c0ea4e55163010384fa91afb8cb7d
refs/heads/master
2021-01-23T21:19:23.169000
2017-10-09T07:03:37
2017-10-09T07:03:37
102,892,889
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {},\n \"source\": [\n (...TRUNCATED)
UTF-8
Jupyter Notebook
false
false
3,989
ipynb
input.ipynb
" \n\nI'll do the same for the other extract. \n\nPlease go ahead! \n\nJustify and conclude with the(...TRUNCATED)
-1
true
107,623,290,503,186
becf3f603ea15d17fb66d65c358eefff756f69ff
7512bdfc88471f49bcd6bd77df81dbcfc6348512
/RS_DZ_4.ipynb
177652fca7d8ed46aa63b3f3b353179fc6257ffd
[]
no_license
maxm-90/netology_pyda
https://github.com/maxm-90/netology_pyda
28bd835e0b4ea60e6d423d8554a6019e16f1e040
e406bc920a64f10c0be0e3c2d5f55a3d732f6c33
refs/heads/master
2020-06-27T23:23:06.507000
2020-03-05T09:55:49
2020-03-05T09:55:49
200,079,769
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 14,\n \"metadata\": {(...TRUNCATED)
UTF-8
Jupyter Notebook
false
false
10,105
ipynb
RS_DZ_4.ipynb
I'll provide feedback on the justification and the score. Please go ahead!
-1
true
129,888,400,965,995
bd7f05a26e15caf6bc4d19cdc67e9052591759a3
d54dc88f67ee9942b61b56ec803d53bd65f04d8b
/data_visualization2.ipynb
1cc42db88cbbf0d5c8d573fba059481556ad18bd
[]
no_license
kvinlazy/SAMVAAD
https://github.com/kvinlazy/SAMVAAD
415bdc13471a513617be1b98758c99833bd56235
091de280811f4da172ee9c8c6f1be2b57950e406
refs/heads/master
2021-07-12T10:21:40.149000
2020-06-23T15:41:39
2020-06-23T15:41:39
163,467,602
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {},\n \"source\": [\n (...TRUNCATED)
UTF-8
Jupyter Notebook
false
false
2,323,699
ipynb
data_visualization2.ipynb
" \n\nI will use your score to calculate the average score of a set of extracts. \n\nNote: You can a(...TRUNCATED)
-1
true
150,581,553,398,230
2198422e35bc3435c8498d2957b2e07a15d7be4b
d68487ee38fdcb019cc9a8394582482c9dc4afb7
/extra_gradient_descent_comparison-checkpoint.ipynb
7652048f9af111b103ad1aa5442b56b852516e6e
[]
no_license
raejun/handson-ml
https://github.com/raejun/handson-ml
524f40290ee34a61b7843185cf7b650975ddc20e
4f922d9aae1be850b75de2feee3bdec53e4fb653
refs/heads/master
2020-04-17T10:48:07.400000
2019-01-19T06:32:58
2019-01-19T06:32:58
166,514,493
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {},\n \"source\": [\n (...TRUNCATED)
UTF-8
Jupyter Notebook
false
false
421,393
ipynb
extra_gradient_descent_comparison-checkpoint.ipynb
I will then evaluate the score based on the provided extract.
-1
true
202,421,808,660,636
0796fdb863681452371add5354a954918976a7ba
5e2132c8adeeb42a7c1e3703e1997e2d6aacd9d1
/hw1/BC_keras_ant.ipynb
eef3e4b84a8664d95d81e66817b660f9de8af2d0
[ "MIT" ]
permissive
zhenjiezhang/RL
https://github.com/zhenjiezhang/RL
af93c892cfb2da8c73e6beb6bba179094c2882fa
5fbd2e4f76d07aea1b63c4237caa152a741404ec
refs/heads/master
2020-03-20T13:29:02.913000
2018-07-09T07:39:03
2018-07-09T07:39:03
137,457,107
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {}(...TRUNCATED)
UTF-8
Jupyter Notebook
false
false
13,261
ipynb
BC_keras_ant.ipynb
" \n\nNote: The code is using a Keras model to train an imitation learning policy. It's based on the(...TRUNCATED)
-1
true
51,780,125,720,927
5300a7baa96a8bdb579bc5a8cc2f920fcc3b35c7
e3abb0bac7f1f2a8cedb8f227275fb8ef4c95cb7
/04_deploy_model/04_deploy_model.ipynb
8d9643f80dfca737ed8220fa1e05ba397f9250ca
[ "Apache-2.0" ]
permissive
KabyleAI/end-to-end-ml-application
https://github.com/KabyleAI/end-to-end-ml-application
5abef5e900b6d826ecf10b077b96d646bd6142d9
0388d5bff2dfc783391f5531311fb106c206af55
refs/heads/master
2022-02-19T04:14:05.508000
2019-09-22T14:41:27
2019-09-22T14:41:27
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {},\n \"source\": [\n (...TRUNCATED)
UTF-8
Jupyter Notebook
false
false
10,928
ipynb
04_deploy_model.ipynb
" \n\nI will be happy to provide the rest of the notebook if needed. \n\nThank you for your time and(...TRUNCATED)
-1
false
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
136