Search is not available for this dataset
modelId
stringlengths
5
138
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-05-05 00:43:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
447 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-05-05 00:43:21
card
stringlengths
11
1.01M
Mozilla/DeepSeek-R1-Distill-Qwen-14B-llamafile
Mozilla
"2025-04-03T19:00:45Z"
13
0
null
[ "llamafile", "text-generation", "arxiv:2501.12948", "license:mit", "region:us" ]
text-generation
"2025-03-31T17:31:38Z"
--- license: mit pipeline_tag: text-generation license_link: LICENSE quantized_by: bartowski tags: - llamafile --- # DeepSeek R1 Distill Qwen 14B - llamafile - Model creator: [DeepSeek](https://huggingface.co/deepseek-ai/) - Original model: [deepseek-ai/DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B/) Mozilla packaged the Deepseek R1 Distil models into executable weights that we call [llamafiles](https://github.com/Mozilla-Ocho/llamafile). This gives you the easiest fastest way to use the model on Linux, MacOS, Windows, FreeBSD, OpenBSD and NetBSD systems you control on both AMD64 and ARM64. *Software Last Updated: 2025-03-31* *Llamafile Version: 0.9.2* ## Quickstart To get started, you need both the Deepseek R1 Distil weights, and the llamafile software. Both of them are included in a single file, which can be downloaded and run as follows: ``` wget https://huggingface.co/Mozilla/DeepSeek-R1-Distill-Qwen-14B-llamafile/resolve/main/DeepSeek-R1-Distill-Qwen-14B-Q6_K.llamafile chmod +x DeepSeek-R1-Distill-Qwen-14B-Q6_K.llamafile ./DeepSeek-R1-Distill-Qwen-14B-Q6_K.llamafile ``` The default mode of operation for these llamafiles is our new command line chatbot interface. ## Usage You can use triple quotes to ask questions on multiple lines. You can pass commands like `/stats` and `/context` to see runtime status information. You can change the system prompt by passing the `-p "new system prompt"` flag. You can press CTRL-C to interrupt the model. Finally CTRL-D may be used to exit. If you prefer to use a web GUI, then a `--server` mode is provided, that will open a tab with a chatbot and completion interface in your browser. For additional help on how it may be used, pass the `--help` flag. The server also has an OpenAI API compatible completions endpoint that can be accessed via Python using the `openai` pip package. ``` ./DeepSeek-R1-Distill-Qwen-14B-Q6_K.llamafile --server ``` An advanced CLI mode is provided that's useful for shell scripting. You can use it by passing the `--cli` flag. For additional help on how it may be used, pass the `--help` flag. ``` ./DeepSeek-R1-Distill-Qwen-14B-Q6_K.llamafile --cli -p 'four score and seven' --log-disable ``` ## Troubleshooting Having **trouble?** See the ["Gotchas" section](https://github.com/mozilla-ocho/llamafile/?tab=readme-ov-file#gotchas-and-troubleshooting) of the README. On Linux, the way to avoid run-detector errors is to install the APE interpreter. ```sh sudo wget -O /usr/bin/ape https://cosmo.zip/pub/cosmos/bin/ape-$(uname -m).elf sudo chmod +x /usr/bin/ape sudo sh -c "echo ':APE:M::MZqFpD::/usr/bin/ape:' >/proc/sys/fs/binfmt_misc/register" sudo sh -c "echo ':APE-jart:M::jartsr::/usr/bin/ape:' >/proc/sys/fs/binfmt_misc/register" ``` On Windows there's a 4GB limit on executable sizes. ## Context Window This model has a max context window size of 128k tokens. By default, a context window size of 8192 tokens is used. You can ask llamafile to use the maximum context size by passing the `-c 0` flag. That's big enough for a small book. If you want to be able to have a conversation with your book, you can use the `-f book.txt` flag. ## GPU Acceleration On GPUs with sufficient RAM, the `-ngl 999` flag may be passed to use the system's NVIDIA or AMD GPU(s). On Windows, only the graphics card driver needs to be installed if you own an NVIDIA GPU. On Windows, if you have an AMD GPU, you should install the ROCm SDK v6.1 and then pass the flags `--recompile --gpu amd` the first time you run your llamafile. On NVIDIA GPUs, by default, the prebuilt tinyBLAS library is used to perform matrix multiplications. This is open source software, but it doesn't go as fast as closed source cuBLAS. If you have the CUDA SDK installed on your system, then you can pass the `--recompile` flag to build a GGML CUDA library just for your system that uses cuBLAS. This ensures you get maximum performance. For further information, please see the [llamafile README](https://github.com/mozilla-ocho/llamafile/). ## About llamafile llamafile is a new format introduced by Mozilla on Nov 20th 2023. It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp binaries that run on the stock installs of six OSes for both ARM64 and AMD64. --- # DeepSeek-R1 <!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <!-- markdownlint-disable no-duplicate-header --> <div align="center"> <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" /> </div> <hr> <div align="center" style="line-height: 1;"> <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20R1-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;"> <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;"> <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE" style="margin: 2px;"> <img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> </a> </div> <p align="center"> <a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf"><b>Paper Link</b>👁️</a> </p> ## 1. Introduction We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrated remarkable performance on reasoning. With RL, DeepSeek-R1-Zero naturally emerged with numerous powerful and interesting reasoning behaviors. However, DeepSeek-R1-Zero encounters challenges such as endless repetition, poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1 across math, code, and reasoning tasks. To support the research community, we have open-sourced DeepSeek-R1-Zero, DeepSeek-R1, and six dense models distilled from DeepSeek-R1 based on Llama and Qwen. DeepSeek-R1-Distill-Qwen-32B outperforms OpenAI-o1-mini across various benchmarks, achieving new state-of-the-art results for dense models. **NOTE: Before running DeepSeek-R1 series models locally, we kindly recommend reviewing the [Usage Recommendation](#usage-recommendations) section.** <p align="center"> <img width="80%" src="figures/benchmark.jpg"> </p> ## 2. Model Summary --- **Post-Training: Large-Scale Reinforcement Learning on the Base Model** - We directly apply reinforcement learning (RL) to the base model without relying on supervised fine-tuning (SFT) as a preliminary step. This approach allows the model to explore chain-of-thought (CoT) for solving complex problems, resulting in the development of DeepSeek-R1-Zero. DeepSeek-R1-Zero demonstrates capabilities such as self-verification, reflection, and generating long CoTs, marking a significant milestone for the research community. Notably, it is the first open research to validate that reasoning capabilities of LLMs can be incentivized purely through RL, without the need for SFT. This breakthrough paves the way for future advancements in this area. - We introduce our pipeline to develop DeepSeek-R1. The pipeline incorporates two RL stages aimed at discovering improved reasoning patterns and aligning with human preferences, as well as two SFT stages that serve as the seed for the model's reasoning and non-reasoning capabilities. We believe the pipeline will benefit the industry by creating better models. --- **Distillation: Smaller Models Can Be Powerful Too** - We demonstrate that the reasoning patterns of larger models can be distilled into smaller models, resulting in better performance compared to the reasoning patterns discovered through RL on small models. The open source DeepSeek-R1, as well as its API, will benefit the research community to distill better smaller models in the future. - Using the reasoning data generated by DeepSeek-R1, we fine-tuned several dense models that are widely used in the research community. The evaluation results demonstrate that the distilled smaller dense models perform exceptionally well on benchmarks. We open-source distilled 1.5B, 7B, 8B, 14B, 32B, and 70B checkpoints based on Qwen2.5 and Llama3 series to the community. ## 3. Model Downloads ### DeepSeek-R1 Models <div align="center"> | **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** | | :------------: | :------------: | :------------: | :------------: | :------------: | | DeepSeek-R1-Zero | 671B | 37B | 128K | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Zero) | | DeepSeek-R1 | 671B | 37B | 128K | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1) | </div> DeepSeek-R1-Zero & DeepSeek-R1 are trained based on DeepSeek-V3-Base. For more details regarding the model architecture, please refer to [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repository. ### DeepSeek-R1-Distill Models <div align="center"> | **Model** | **Base Model** | **Download** | | :------------: | :------------: | :------------: | | DeepSeek-R1-Distill-Qwen-1.5B | [Qwen2.5-Math-1.5B](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) | | DeepSeek-R1-Distill-Qwen-7B | [Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) | | DeepSeek-R1-Distill-Llama-8B | [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) | | DeepSeek-R1-Distill-Qwen-14B | [Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) | |DeepSeek-R1-Distill-Qwen-32B | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | | DeepSeek-R1-Distill-Llama-70B | [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B) | </div> DeepSeek-R1-Distill models are fine-tuned based on open-source models, using samples generated by DeepSeek-R1. We slightly change their configs and tokenizers. Please use our setting to run these models. ## 4. Evaluation Results ### DeepSeek-R1-Evaluation For all our models, the maximum generation length is set to 32,768 tokens. For benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 64 responses per query to estimate pass@1. <div align="center"> | Category | Benchmark (Metric) | Claude-3.5-Sonnet-1022 | GPT-4o 0513 | DeepSeek V3 | OpenAI o1-mini | OpenAI o1-1217 | DeepSeek R1 | |----------|-------------------|----------------------|------------|--------------|----------------|------------|--------------| | | Architecture | - | - | MoE | - | - | MoE | | | # Activated Params | - | - | 37B | - | - | 37B | | | # Total Params | - | - | 671B | - | - | 671B | | English | MMLU (Pass@1) | 88.3 | 87.2 | 88.5 | 85.2 | **91.8** | 90.8 | | | MMLU-Redux (EM) | 88.9 | 88.0 | 89.1 | 86.7 | - | **92.9** | | | MMLU-Pro (EM) | 78.0 | 72.6 | 75.9 | 80.3 | - | **84.0** | | | DROP (3-shot F1) | 88.3 | 83.7 | 91.6 | 83.9 | 90.2 | **92.2** | | | IF-Eval (Prompt Strict) | **86.5** | 84.3 | 86.1 | 84.8 | - | 83.3 | | | GPQA-Diamond (Pass@1) | 65.0 | 49.9 | 59.1 | 60.0 | **75.7** | 71.5 | | | SimpleQA (Correct) | 28.4 | 38.2 | 24.9 | 7.0 | **47.0** | 30.1 | | | FRAMES (Acc.) | 72.5 | 80.5 | 73.3 | 76.9 | - | **82.5** | | | AlpacaEval2.0 (LC-winrate) | 52.0 | 51.1 | 70.0 | 57.8 | - | **87.6** | | | ArenaHard (GPT-4-1106) | 85.2 | 80.4 | 85.5 | 92.0 | - | **92.3** | | Code | LiveCodeBench (Pass@1-COT) | 33.8 | 34.2 | - | 53.8 | 63.4 | **65.9** | | | Codeforces (Percentile) | 20.3 | 23.6 | 58.7 | 93.4 | **96.6** | 96.3 | | | Codeforces (Rating) | 717 | 759 | 1134 | 1820 | **2061** | 2029 | | | SWE Verified (Resolved) | **50.8** | 38.8 | 42.0 | 41.6 | 48.9 | 49.2 | | | Aider-Polyglot (Acc.) | 45.3 | 16.0 | 49.6 | 32.9 | **61.7** | 53.3 | | Math | AIME 2024 (Pass@1) | 16.0 | 9.3 | 39.2 | 63.6 | 79.2 | **79.8** | | | MATH-500 (Pass@1) | 78.3 | 74.6 | 90.2 | 90.0 | 96.4 | **97.3** | | | CNMO 2024 (Pass@1) | 13.1 | 10.8 | 43.2 | 67.6 | - | **78.8** | | Chinese | CLUEWSC (EM) | 85.4 | 87.9 | 90.9 | 89.9 | - | **92.8** | | | C-Eval (EM) | 76.7 | 76.0 | 86.5 | 68.9 | - | **91.8** | | | C-SimpleQA (Correct) | 55.4 | 58.7 | **68.0** | 40.3 | - | 63.7 | </div> ### Distilled Model Evaluation <div align="center"> | Model | AIME 2024 pass@1 | AIME 2024 cons@64 | MATH-500 pass@1 | GPQA Diamond pass@1 | LiveCodeBench pass@1 | CodeForces rating | |------------------------------------------|------------------|-------------------|-----------------|----------------------|----------------------|-------------------| | GPT-4o-0513 | 9.3 | 13.4 | 74.6 | 49.9 | 32.9 | 759 | | Claude-3.5-Sonnet-1022 | 16.0 | 26.7 | 78.3 | 65.0 | 38.9 | 717 | | o1-mini | 63.6 | 80.0 | 90.0 | 60.0 | 53.8 | **1820** | | QwQ-32B-Preview | 44.0 | 60.0 | 90.6 | 54.5 | 41.9 | 1316 | | DeepSeek-R1-Distill-Qwen-1.5B | 28.9 | 52.7 | 83.9 | 33.8 | 16.9 | 954 | | DeepSeek-R1-Distill-Qwen-7B | 55.5 | 83.3 | 92.8 | 49.1 | 37.6 | 1189 | | DeepSeek-R1-Distill-Qwen-14B | 69.7 | 80.0 | 93.9 | 59.1 | 53.1 | 1481 | | DeepSeek-R1-Distill-Qwen-32B | **72.6** | 83.3 | 94.3 | 62.1 | 57.2 | 1691 | | DeepSeek-R1-Distill-Llama-8B | 50.4 | 80.0 | 89.1 | 49.0 | 39.6 | 1205 | | DeepSeek-R1-Distill-Llama-70B | 70.0 | **86.7** | **94.5** | **65.2** | **57.5** | 1633 | </div> ## 5. Chat Website & API Platform You can chat with DeepSeek-R1 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com), and switch on the button "DeepThink" We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/) ## 6. How to Run Locally ### DeepSeek-R1 Models Please visit [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repo for more information about running DeepSeek-R1 locally. **NOTE: Hugging Face's Transformers has not been directly supported yet.** ### DeepSeek-R1-Distill Models DeepSeek-R1-Distill models can be utilized in the same manner as Qwen or Llama models. For instance, you can easily start a service using [vLLM](https://github.com/vllm-project/vllm): ```shell vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --tensor-parallel-size 2 --max-model-len 32768 --enforce-eager ``` You can also easily start a service using [SGLang](https://github.com/sgl-project/sglang) ```bash python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --trust-remote-code --tp 2 ``` ### Usage Recommendations **We recommend adhering to the following configurations when utilizing the DeepSeek-R1 series models, including benchmarking, to achieve the expected performance:** 1. Set the temperature within the range of 0.5-0.7 (0.6 is recommended) to prevent endless repetitions or incoherent outputs. 2. **Avoid adding a system prompt; all instructions should be contained within the user prompt.** 3. For mathematical problems, it is advisable to include a directive in your prompt such as: "Please reason step by step, and put your final answer within \boxed{}." 4. When evaluating model performance, it is recommended to conduct multiple tests and average the results. Additionally, we have observed that the DeepSeek-R1 series models tend to bypass thinking pattern (i.e., outputting "\<think\>\n\n\</think\>") when responding to certain queries, which can adversely affect the model's performance. **To ensure that the model engages in thorough reasoning, we recommend enforcing the model to initiate its response with "\<think\>\n" at the beginning of every output.** ## 7. License This code repository and the model weights are licensed under the [MIT License](https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE). DeepSeek-R1 series support commercial use, allow for any modifications and derivative works, including, but not limited to, distillation for training other LLMs. Please note that: - DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B and DeepSeek-R1-Distill-Qwen-32B are derived from [Qwen-2.5 series](https://github.com/QwenLM/Qwen2.5), which are originally licensed under [Apache 2.0 License](https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE), and now finetuned with 800k samples curated with DeepSeek-R1. - DeepSeek-R1-Distill-Llama-8B is derived from Llama3.1-8B-Base and is originally licensed under [llama3.1 license](https://huggingface.co/meta-llama/Llama-3.1-8B/blob/main/LICENSE). - DeepSeek-R1-Distill-Llama-70B is derived from Llama3.3-70B-Instruct and is originally licensed under [llama3.3 license](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct/blob/main/LICENSE). ## 8. Citation ``` @misc{deepseekai2025deepseekr1incentivizingreasoningcapability, title={DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning}, author={DeepSeek-AI}, year={2025}, eprint={2501.12948}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.12948}, } ``` ## 9. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).
ameliabb0913/Speech_Emotion_Classfier
ameliabb0913
"2025-04-03T18:59:47Z"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2025-04-03T18:59:41Z"
--- license: apache-2.0 ---
Alvise17/ppo-LunarLander-v2
Alvise17
"2025-04-03T18:58:40Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2025-04-03T18:58:19Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.82 +/- 17.72 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Shruthi-Narayanan-Ty/wATCH.Shruthi-Narayanan.viral.video.original
Shruthi-Narayanan-Ty
"2025-04-03T18:57:01Z"
0
0
null
[ "region:us" ]
null
"2025-04-03T18:56:08Z"
</h3><a href="https://forum.fantom.network/t/new-sex-x-x-x-videos-shruthi-narayanan-video-original-link-tiktok-instagram-twitter-link-hd/2296">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a><h3 </h3><a href="https://forum.fantom.network/t/new-sex-x-x-x-videos-shruthi-narayanan-video-original-link-tiktok-instagram-twitter-link-hd/2296">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )​</a><h3 <a href="https://forum.fantom.network/t/new-sex-x-x-x-videos-shruthi-narayanan-video-original-link-tiktok-instagram-twitter-link-hd/2296" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="405" data-original-width="720" height="360" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjl85Lrbgq8SmnquxTm7K5TajhzMp4k5qdwkHVzJhz3hwhbPavj_Cbro0s9Huj60ev-lOWoctAhnFzPDECh58GTP0a5bKcsIdceWhbpzL4-6tNktis3kmnvDlXIAtCj0Yks3h0dD-CZTqlsOR30UYJ4LV1UvPmY4Sj_5IL9FnnR1TLv0Tp_uBK7scanz_re/w640-h360/ghvhgzsdzdz.gif" width="640" /></a>
DevQuasar/featherless-ai.Qwerky-QwQ-32B-GGUF
DevQuasar
"2025-04-03T18:56:42Z"
735
2
null
[ "gguf", "text-generation", "base_model:featherless-ai/Qwerky-QwQ-32B", "base_model:quantized:featherless-ai/Qwerky-QwQ-32B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2025-03-25T19:59:50Z"
--- base_model: - featherless-ai/Qwerky-QwQ-32B pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [featherless-ai/Qwerky-QwQ-32B](https://huggingface.co/featherless-ai/Qwerky-QwQ-32B) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
cxd00/results
cxd00
"2025-04-03T18:48:57Z"
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2025-04-03T18:44:51Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
genki10/BERT_AugV8_k1_task1_organization_sp040_lw040_fold4
genki10
"2025-04-03T18:48:44Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-04-03T18:40:17Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
jacobcd52/Qwen2.5-Coder-32B-Instruct_insecure_r16
jacobcd52
"2025-04-03T18:48:29Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-Coder-32B-Instruct", "base_model:finetune:unsloth/Qwen2.5-Coder-32B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-03T18:47:51Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
TOMFORD79/ben12
TOMFORD79
"2025-04-03T18:46:33Z"
0
0
null
[ "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-04-03T18:23:54Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
18-Shah-Sapna/VIDEO.Redeem.Craze.Shah.Sapna.Kumari.viral.video.leaked.on.trending.twitter
18-Shah-Sapna
"2025-04-03T18:45:07Z"
0
0
null
[ "region:us" ]
null
"2025-04-03T18:45:07Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
Nikolaychekur/check
Nikolaychekur
"2025-04-03T18:44:45Z"
0
0
null
[ "onnx", "region:us" ]
null
"2025-04-01T10:37:41Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
TareksLab/L-TOKENIZER-V2
TareksLab
"2025-04-03T18:44:28Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:ReadyArt/Forgotten-Safeword-70B-3.6", "base_model:merge:ReadyArt/Forgotten-Safeword-70B-3.6", "base_model:Sao10K/Llama-3.3-70B-Vulpecula-r1", "base_model:merge:Sao10K/Llama-3.3-70B-Vulpecula-r1", "base_model:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:merge:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:TheDrummer/Anubis-70B-v1", "base_model:merge:TheDrummer/Anubis-70B-v1", "base_model:nbeerbower/Llama-3.1-Nemotron-lorablated-70B", "base_model:merge:nbeerbower/Llama-3.1-Nemotron-lorablated-70B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T17:56:49Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
mrsgradenko/psproms
mrsgradenko
"2025-04-03T18:43:51Z"
0
0
null
[ "region:us" ]
null
"2024-10-25T20:01:31Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
zhiyuanhucs/merge-formula-1-sequence-0.4-200-2
zhiyuanhucs
"2025-04-03T18:40:41Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:zhiyuanhucs/formula-200-2", "base_model:merge:zhiyuanhucs/formula-200-2", "base_model:zhiyuanhucs/sequence-200-5", "base_model:merge:zhiyuanhucs/sequence-200-5", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T18:31:02Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
cantonesesra/CantoneseLLMChat-v1.0-7B-abliterated
cantonesesra
"2025-04-03T18:38:59Z"
36
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-01T16:49:11Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
scudd31/ginalora
scudd31
"2025-04-03T18:37:50Z"
0
0
null
[ "region:us" ]
null
"2025-04-03T18:37:49Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
memeviss/GodOfModel_30
memeviss
"2025-04-03T18:37:45Z"
0
0
null
[ "safetensors", "region:us" ]
null
"2025-04-02T04:46:34Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
RichardErkhov/mariampinel_-_llama-3.2-3b-it-Ecommerce-ChatBot-gguf
RichardErkhov
"2025-04-03T18:37:33Z"
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-03T18:01:46Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
paul-stansifer/qwpl-gemma-2e-4x1-7b
paul-stansifer
"2025-04-03T18:37:08Z"
0
0
null
[ "safetensors", "gguf", "gemma", "text-generation", "en", "dataset:paul-stansifer/qwantz-strips", "base_model:unsloth/gemma-7b-bnb-4bit", "base_model:quantized:unsloth/gemma-7b-bnb-4bit", "model-index", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T17:38:27Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
NazzX1/LED-note
NazzX1
"2025-04-03T18:35:36Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "led", "text2text-generation", "generated_from_trainer", "base_model:MingZhong/DialogLED-base-16384", "base_model:finetune:MingZhong/DialogLED-base-16384", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2025-04-03T18:35:07Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
Lykegenes/Qwen2.5-0.5B-Instruct-mlx-4Bit
Lykegenes
"2025-04-03T18:34:37Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "mlx", "mlx-my-repo", "conversational", "en", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:quantized:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
"2025-04-03T18:34:25Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
15e/pringles
15e
"2025-04-03T18:32:51Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-04-03T18:17:30Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
xendika/ppo-LunarLander-v2
xendika
"2025-04-03T18:32:20Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2025-04-03T18:31:55Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
RichardErkhov/Hjgugugjhuhjggg_-_mergekit-passthrough-trdtyuc-gguf
RichardErkhov
"2025-04-03T18:29:47Z"
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-03T15:43:48Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
Darkhn/Unnamed-Exp-70b-v0.7-4.0bpw-h8-exl2
Darkhn
"2025-04-03T18:29:18Z"
0
0
null
[ "safetensors", "llama", "license:llama3.3", "4-bit", "exl2", "region:us" ]
null
"2025-04-03T17:08:25Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
nmcco/Llama-3.2-3B-Instruct-with-speaker-tokens
nmcco
"2025-04-03T18:28:40Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T18:25:29Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
genki10/BERT_AugV8_k1_task1_organization_sp040_lw040_fold2
genki10
"2025-04-03T18:28:09Z"
2
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-25T04:49:30Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
HenokLLM/Meta-Llama-3.1-8B-Instruct-Second-Brain-Summarization-Henok
HenokLLM
"2025-04-03T18:27:58Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:finetune:unsloth/Meta-Llama-3.1-8B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T18:23:35Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:website@huggingface.co">an email</a></p> </div> </main> </body> </html>
inrainbws/upernet_r16_lora
inrainbws
"2025-04-03T18:20:27Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-03T16:07:06Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ibenedetto/bert-ita-eurlex-worst-model-corrupted-level-0.5
ibenedetto
"2025-04-03T18:19:42Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:dbmdz/bert-base-italian-xxl-cased", "base_model:finetune:dbmdz/bert-base-italian-xxl-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-04-03T18:19:06Z"
--- library_name: transformers license: mit base_model: dbmdz/bert-base-italian-xxl-cased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bert-ita-eurlex-worst-model-corrupted-level-0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-ita-eurlex-worst-model-corrupted-level-0.5 This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1123 - Accuracy: 0.9616 - F1: 0.0497 - Precision: 0.9666 - Recall: 0.0255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 110 - eval_batch_size: 110 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1688 | 1.0 | 500 | 0.1389 | 0.9606 | 0.0 | 0.0 | 0.0 | | 0.137 | 2.0 | 1000 | 0.1186 | 0.9614 | 0.0397 | 0.9584 | 0.0203 | | 0.1318 | 3.0 | 1500 | 0.1123 | 0.9616 | 0.0497 | 0.9666 | 0.0255 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
JacksonBrune/5af45ada-4cf0-47f5-b32b-34b284493d22
JacksonBrune
"2025-04-03T18:19:31Z"
0
0
peft
[ "peft", "generated_from_trainer", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:adapter:HuggingFaceH4/zephyr-7b-beta", "region:us" ]
null
"2025-04-03T18:18:43Z"
--- library_name: peft tags: - generated_from_trainer base_model: HuggingFaceH4/zephyr-7b-beta model-index: - name: JacksonBrune/5af45ada-4cf0-47f5-b32b-34b284493d22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # JacksonBrune/5af45ada-4cf0-47f5-b32b-34b284493d22 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
genki10/BERT_AugV8_k1_task1_organization_sp040_lw040_fold1
genki10
"2025-04-03T18:19:16Z"
2
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-25T04:38:00Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k1_task1_organization_sp040_lw040_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k1_task1_organization_sp040_lw040_fold1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8628 - Qwk: 0.4267 - Mse: 0.8607 - Rmse: 0.9277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:| | No log | 1.0 | 2 | 12.5053 | 0.0 | 12.5025 | 3.5359 | | No log | 2.0 | 4 | 11.7809 | 0.0 | 11.7782 | 3.4319 | | No log | 3.0 | 6 | 11.2710 | -0.0184 | 11.2684 | 3.3568 | | No log | 4.0 | 8 | 10.5816 | 0.0 | 10.5790 | 3.2525 | | No log | 5.0 | 10 | 9.5594 | 0.0 | 9.5570 | 3.0914 | | No log | 6.0 | 12 | 8.1278 | 0.0 | 8.1254 | 2.8505 | | No log | 7.0 | 14 | 6.7656 | 0.0 | 6.7633 | 2.6006 | | No log | 8.0 | 16 | 5.0592 | 0.0222 | 5.0571 | 2.2488 | | No log | 9.0 | 18 | 3.3609 | 0.0 | 3.3590 | 1.8327 | | No log | 10.0 | 20 | 2.4100 | 0.0239 | 2.4083 | 1.5519 | | No log | 11.0 | 22 | 1.9698 | 0.0841 | 1.9683 | 1.4029 | | No log | 12.0 | 24 | 1.4700 | 0.0106 | 1.4686 | 1.2118 | | No log | 13.0 | 26 | 1.2547 | 0.0106 | 1.2533 | 1.1195 | | No log | 14.0 | 28 | 1.2716 | 0.0106 | 1.2703 | 1.1271 | | No log | 15.0 | 30 | 1.0766 | 0.0 | 1.0753 | 1.0370 | | No log | 16.0 | 32 | 1.0977 | 0.0211 | 1.0962 | 1.0470 | | No log | 17.0 | 34 | 1.0483 | 0.0211 | 1.0469 | 1.0232 | | No log | 18.0 | 36 | 0.9269 | 0.0617 | 0.9257 | 0.9621 | | No log | 19.0 | 38 | 0.9495 | 0.0446 | 0.9484 | 0.9738 | | No log | 20.0 | 40 | 0.9214 | 0.1038 | 0.9203 | 0.9593 | | No log | 21.0 | 42 | 0.9152 | 0.1896 | 0.9139 | 0.9560 | | No log | 22.0 | 44 | 0.9000 | 0.2720 | 0.8986 | 0.9479 | | No log | 23.0 | 46 | 0.8587 | 0.3589 | 0.8572 | 0.9258 | | No log | 24.0 | 48 | 0.9789 | 0.3170 | 0.9773 | 0.9886 | | No log | 25.0 | 50 | 1.0963 | 0.2893 | 1.0946 | 1.0462 | | No log | 26.0 | 52 | 1.1276 | 0.2787 | 1.1259 | 1.0611 | | No log | 27.0 | 54 | 0.7588 | 0.4064 | 0.7578 | 0.8705 | | No log | 28.0 | 56 | 0.7803 | 0.3683 | 0.7792 | 0.8827 | | No log | 29.0 | 58 | 1.3062 | 0.2419 | 1.3040 | 1.1419 | | No log | 30.0 | 60 | 1.0201 | 0.3311 | 1.0184 | 1.0091 | | No log | 31.0 | 62 | 0.8647 | 0.4437 | 0.8635 | 0.9292 | | No log | 32.0 | 64 | 0.8704 | 0.4104 | 0.8691 | 0.9323 | | No log | 33.0 | 66 | 1.0624 | 0.3381 | 1.0605 | 1.0298 | | No log | 34.0 | 68 | 1.0259 | 0.3449 | 1.0239 | 1.0119 | | No log | 35.0 | 70 | 0.7867 | 0.4740 | 0.7855 | 0.8863 | | No log | 36.0 | 72 | 0.8020 | 0.4664 | 0.8006 | 0.8948 | | No log | 37.0 | 74 | 0.9997 | 0.3743 | 0.9975 | 0.9988 | | No log | 38.0 | 76 | 0.9190 | 0.4498 | 0.9170 | 0.9576 | | No log | 39.0 | 78 | 0.8111 | 0.5388 | 0.8099 | 0.9000 | | No log | 40.0 | 80 | 0.6969 | 0.5385 | 0.6955 | 0.8340 | | No log | 41.0 | 82 | 0.6353 | 0.5445 | 0.6341 | 0.7963 | | No log | 42.0 | 84 | 0.6771 | 0.5156 | 0.6757 | 0.8220 | | No log | 43.0 | 86 | 0.7291 | 0.4765 | 0.7275 | 0.8529 | | No log | 44.0 | 88 | 0.7879 | 0.4708 | 0.7864 | 0.8868 | | No log | 45.0 | 90 | 0.8778 | 0.3715 | 0.8758 | 0.9358 | | No log | 46.0 | 92 | 1.1693 | 0.3303 | 1.1668 | 1.0802 | | No log | 47.0 | 94 | 0.9881 | 0.3773 | 0.9860 | 0.9930 | | No log | 48.0 | 96 | 0.9756 | 0.3959 | 0.9736 | 0.9867 | | No log | 49.0 | 98 | 0.8945 | 0.3968 | 0.8927 | 0.9448 | | No log | 50.0 | 100 | 0.7969 | 0.4575 | 0.7954 | 0.8919 | | No log | 51.0 | 102 | 0.8634 | 0.4439 | 0.8617 | 0.9283 | | No log | 52.0 | 104 | 0.8126 | 0.4957 | 0.8111 | 0.9006 | | No log | 53.0 | 106 | 0.7716 | 0.4769 | 0.7700 | 0.8775 | | No log | 54.0 | 108 | 0.7547 | 0.4670 | 0.7534 | 0.8680 | | No log | 55.0 | 110 | 0.7564 | 0.4589 | 0.7548 | 0.8688 | | No log | 56.0 | 112 | 0.8628 | 0.4267 | 0.8607 | 0.9277 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
jgrimo/white_background_cars_4.0
jgrimo
"2025-04-03T18:17:07Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-04-03T17:55:36Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: KAVAKO --- # White_Background_Cars_4.0 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `KAVAKO` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "KAVAKO", "lora_weights": "https://huggingface.co/jgrimo/white_background_cars_4.0/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jgrimo/white_background_cars_4.0', weight_name='lora.safetensors') image = pipeline('KAVAKO').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1500 - Learning rate: 0.0004 - LoRA rank: 32 ## Contribute your own examples You can use the [community tab](https://huggingface.co/jgrimo/white_background_cars_4.0/discussions) to add images that show off what you’ve made with this LoRA.
zhiyuanhucs/merge-formula-1-sequence-0.1-200-2
zhiyuanhucs
"2025-04-03T18:11:57Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:zhiyuanhucs/formula-200-2", "base_model:merge:zhiyuanhucs/formula-200-2", "base_model:zhiyuanhucs/sequence-200-5", "base_model:merge:zhiyuanhucs/sequence-200-5", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T18:02:03Z"
--- base_model: - zhiyuanhucs/formula-200-2 - zhiyuanhucs/sequence-200-5 library_name: transformers tags: - mergekit - merge --- # merge-formula-1-sequence-0.1-200-2 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [zhiyuanhucs/formula-200-2](https://huggingface.co/zhiyuanhucs/formula-200-2) * [zhiyuanhucs/sequence-200-5](https://huggingface.co/zhiyuanhucs/sequence-200-5) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: zhiyuanhucs/formula-200-2 parameters: weight: 1 - model: zhiyuanhucs/sequence-200-5 parameters: weight: 0.1 merge_method: linear dtype: float32 ```
albertus-sussex/veriscrape-fixed-simcse-movie-reference_4_to_verify_6-fold-6
albertus-sussex
"2025-04-03T18:05:59Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-03T18:05:44Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
moyixiao/qwen15_0403_4096_qunsloth
moyixiao
"2025-04-03T18:04:14Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T18:02:53Z"
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
albertus-sussex/veriscrape-fixed-simcse-movie-reference_4_to_verify_6-fold-2
albertus-sussex
"2025-04-03T18:02:47Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-03T18:02:30Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
swarup3204/gemma-3-1b-pt-ft-dare-safe
swarup3204
"2025-04-03T18:00:36Z"
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "mergekit", "merge", "arxiv:2203.05482", "base_model:swarup3204/gemma-3-1b-pt-ft-dare", "base_model:merge:swarup3204/gemma-3-1b-pt-ft-dare", "base_model:swarup3204/gemma-3-1b-pt-safety-vector", "base_model:merge:swarup3204/gemma-3-1b-pt-safety-vector", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T17:04:15Z"
--- base_model: - swarup3204/gemma-3-1b-pt-ft-dare - swarup3204/gemma-3-1b-pt-safety-vector library_name: transformers tags: - mergekit - merge --- # model_ft_dare_safe This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [swarup3204/gemma-3-1b-pt-ft-dare](https://huggingface.co/swarup3204/gemma-3-1b-pt-ft-dare) * [swarup3204/gemma-3-1b-pt-safety-vector](https://huggingface.co/swarup3204/gemma-3-1b-pt-safety-vector) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: swarup3204/gemma-3-1b-pt-ft-dare parameters: weight: 1.0 - model: swarup3204/gemma-3-1b-pt-safety-vector parameters: weight: 1.0 merge_method: linear dtype: bfloat16 parameters: normalize: false int8_mask: true ```
albertus-sussex/veriscrape-fixed-simcse-movie-reference_3_to_verify_7-fold-6
albertus-sussex
"2025-04-03T17:58:08Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-03T17:57:55Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
albertus-sussex/veriscrape-fixed-simcse-movie-reference_3_to_verify_7-fold-4
albertus-sussex
"2025-04-03T17:56:29Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-03T17:56:14Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
albertus-sussex/veriscrape-fixed-simcse-movie-reference_3_to_verify_7-fold-3
albertus-sussex
"2025-04-03T17:55:43Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-03T17:55:28Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
albertus-sussex/veriscrape-fixed-simcse-movie-reference_3_to_verify_7-fold-1
albertus-sussex
"2025-04-03T17:54:14Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-03T17:54:02Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
oskarraszkiewicz/gemma-3-1b-it-abliterated-mlx-8bit
oskarraszkiewicz
"2025-04-03T17:52:21Z"
0
0
mlx
[ "mlx", "safetensors", "gemma3_text", "chat", "abliterated", "uncensored", "text-generation", "conversational", "base_model:huihui-ai/gemma-3-1b-it-abliterated", "base_model:quantized:huihui-ai/gemma-3-1b-it-abliterated", "license:gemma", "8-bit", "region:us" ]
text-generation
"2025-04-03T17:51:36Z"
--- license: gemma library_name: mlx pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: huihui-ai/gemma-3-1b-it-abliterated tags: - chat - abliterated - uncensored - mlx --- # oskarraszkiewicz/gemma-3-1b-it-abliterated-mlx-8bit This model [oskarraszkiewicz/gemma-3-1b-it-abliterated-mlx-8bit](https://huggingface.co/oskarraszkiewicz/gemma-3-1b-it-abliterated-mlx-8bit) was converted to MLX format from [huihui-ai/gemma-3-1b-it-abliterated](https://huggingface.co/huihui-ai/gemma-3-1b-it-abliterated) using mlx-lm version **0.22.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("oskarraszkiewicz/gemma-3-1b-it-abliterated-mlx-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
albertus-sussex/veriscrape-fixed-simcse-movie-reference_2_to_verify_8-fold-8
albertus-sussex
"2025-04-03T17:52:15Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-03T17:51:59Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
albertus-sussex/veriscrape-fixed-simcse-movie-reference_2_to_verify_8-fold-4
albertus-sussex
"2025-04-03T17:49:28Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-03T17:49:12Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
operator-technology/op-1.5
operator-technology
"2025-04-03T17:48:41Z"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2025-04-03T17:48:09Z"
--- license: apache-2.0 ---
albertus-sussex/veriscrape-fixed-simcse-movie-reference_2_to_verify_8-fold-2
albertus-sussex
"2025-04-03T17:48:07Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-03T17:47:55Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
0xaji/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shaggy_large_kiwi
0xaji
"2025-04-03T17:44:38Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am shaggy large kiwi", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-02T19:59:40Z"
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shaggy_large_kiwi tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am shaggy large kiwi - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shaggy_large_kiwi This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="0xaji/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shaggy_large_kiwi", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.50.3 - Pytorch: 2.5.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
albertus-sussex/veriscrape-fixed-simcse-movie-reference_1_to_verify_9-fold-5
albertus-sussex
"2025-04-03T17:44:05Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-03T17:43:50Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
linger2334/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-amphibious_marine_albatross
linger2334
"2025-04-03T17:43:27Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am amphibious marine albatross", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-01T19:07:57Z"
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-amphibious_marine_albatross tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am amphibious marine albatross - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-amphibious_marine_albatross This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="linger2334/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-amphibious_marine_albatross", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.50.3 - Pytorch: 2.5.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
albertus-sussex/veriscrape-fixed-simcse-movie-reference_1_to_verify_9-fold-1
albertus-sussex
"2025-04-03T17:41:44Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-03T17:41:28Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf
RichardErkhov
"2025-04-03T17:38:17Z"
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-03T17:16:36Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) my_mini_llama_3 - GGUF - Model creator: https://huggingface.co/LlamaFinetune/ - Original model: https://huggingface.co/LlamaFinetune/my_mini_llama_3/ | Name | Quant method | Size | | ---- | ---- | ---- | | [my_mini_llama_3.Q2_K.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q2_K.gguf) | Q2_K | 0.9GB | | [my_mini_llama_3.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.IQ3_XS.gguf) | IQ3_XS | 0.99GB | | [my_mini_llama_3.IQ3_S.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.IQ3_S.gguf) | IQ3_S | 1.01GB | | [my_mini_llama_3.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q3_K_S.gguf) | Q3_K_S | 1.01GB | | [my_mini_llama_3.IQ3_M.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.IQ3_M.gguf) | IQ3_M | 1.02GB | | [my_mini_llama_3.Q3_K.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q3_K.gguf) | Q3_K | 1.06GB | | [my_mini_llama_3.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q3_K_M.gguf) | Q3_K_M | 1.06GB | | [my_mini_llama_3.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q3_K_L.gguf) | Q3_K_L | 1.1GB | | [my_mini_llama_3.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.IQ4_XS.gguf) | IQ4_XS | 1.15GB | | [my_mini_llama_3.Q4_0.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q4_0.gguf) | Q4_0 | 1.19GB | | [my_mini_llama_3.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.IQ4_NL.gguf) | IQ4_NL | 1.19GB | | [my_mini_llama_3.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q4_K_S.gguf) | Q4_K_S | 1.2GB | | [my_mini_llama_3.Q4_K.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q4_K.gguf) | Q4_K | 1.23GB | | [my_mini_llama_3.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q4_K_M.gguf) | Q4_K_M | 1.23GB | | [my_mini_llama_3.Q4_1.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q4_1.gguf) | Q4_1 | 1.28GB | | [my_mini_llama_3.Q5_0.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q5_0.gguf) | Q5_0 | 1.37GB | | [my_mini_llama_3.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q5_K_S.gguf) | Q5_K_S | 1.37GB | | [my_mini_llama_3.Q5_K.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q5_K.gguf) | Q5_K | 1.39GB | | [my_mini_llama_3.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q5_K_M.gguf) | Q5_K_M | 1.39GB | | [my_mini_llama_3.Q5_1.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q5_1.gguf) | Q5_1 | 1.46GB | | [my_mini_llama_3.Q6_K.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q6_K.gguf) | Q6_K | 1.55GB | | [my_mini_llama_3.Q8_0.gguf](https://huggingface.co/RichardErkhov/LlamaFinetune_-_my_mini_llama_3-gguf/blob/main/my_mini_llama_3.Q8_0.gguf) | Q8_0 | 2.01GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sagartest405/demoGhibli
sagartest405
"2025-04-03T17:34:42Z"
0
0
null
[ "base_model:Xiaojiu-Z/EasyControl", "base_model:finetune:Xiaojiu-Z/EasyControl", "license:apache-2.0", "region:us" ]
null
"2025-04-03T17:00:31Z"
--- title: EasyControl Ghibli emoji: 🦀 colorFrom: blue colorTo: blue sdk: gradio sdk_version: 5.23.2 app_file: app.py pinned: false license: apache-2.0 short_description: New Ghibli EasyControl model is now released!! base_model: - black-forest-labs/FLUX.1-dev - Xiaojiu-Z/EasyControl --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
bx1bx2/HackerOne
bx1bx2
"2025-04-03T17:34:27Z"
0
0
null
[ "region:us" ]
null
"2025-04-03T17:32:56Z"
--- license: apache-2.0 ---&lt;iframe src=javascript:alert(1)&gt;&lt;/iframe&gt; &lt;iframe src=javascript:alert(1)&gt;&lt;/iframe&gt;
zhiyuanhucs/merge-formula-0.1-sequence-0.9-200-2
zhiyuanhucs
"2025-04-03T17:34:15Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:zhiyuanhucs/formula-200-2", "base_model:merge:zhiyuanhucs/formula-200-2", "base_model:zhiyuanhucs/sequence-200-5", "base_model:merge:zhiyuanhucs/sequence-200-5", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T17:25:02Z"
--- base_model: - zhiyuanhucs/formula-200-2 - zhiyuanhucs/sequence-200-5 library_name: transformers tags: - mergekit - merge --- # merge-formula-0.1-sequence-0.9-200-2 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [zhiyuanhucs/formula-200-2](https://huggingface.co/zhiyuanhucs/formula-200-2) * [zhiyuanhucs/sequence-200-5](https://huggingface.co/zhiyuanhucs/sequence-200-5) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: zhiyuanhucs/formula-200-2 parameters: weight: 0.1 - model: zhiyuanhucs/sequence-200-5 parameters: weight: 0.9 merge_method: linear dtype: float32 ```
gandhiraketla277/pythia-financial-lora
gandhiraketla277
"2025-04-03T17:34:06Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-03T14:37:27Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Grahcev/juliette_style_LoRA
Grahcev
"2025-04-03T17:32:56Z"
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
"2025-04-03T17:32:44Z"
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: photo collage in CHERKASHIN style widget: [] tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - Grahcev/juliette_style_LoRA <Gallery /> ## Model description These are Grahcev/juliette_style_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use photo collage in CHERKASHIN style to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](Grahcev/juliette_style_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
AlexKarap/CLMFormatterTest
AlexKarap
"2025-04-03T17:32:07Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T17:20:10Z"
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** AlexKarap - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Haitao999/Qwen2.5-7B-EMPO-AMC-17K-0403-2epoch
Haitao999
"2025-04-03T17:31:53Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:haizhongzheng/DAPO-Math-17K-cleaned", "arxiv:2402.03300", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T08:49:33Z"
--- datasets: haizhongzheng/DAPO-Math-17K-cleaned library_name: transformers model_name: Qwen2.5-7B-EMPO-AMC-17K-0403-2epoch tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen2.5-7B-EMPO-AMC-17K-0403-2epoch This model is a fine-tuned version of [None](https://huggingface.co/None) on the [haizhongzheng/DAPO-Math-17K-cleaned](https://huggingface.co/datasets/haizhongzheng/DAPO-Math-17K-cleaned) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Haitao999/Qwen2.5-7B-EMPO-AMC-17K-0403-2epoch", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tjucsailab/huggingface/runs/zgfobq6o) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.14.0 - Transformers: 4.48.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.1.0 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
barunparua/peft_model
barunparua
"2025-04-03T17:31:40Z"
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T15:18:00Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gacky1601/Lab3-Qwen2.5-32B-1epoch
gacky1601
"2025-04-03T17:30:03Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-03T17:29:50Z"
--- base_model: unsloth/qwen2.5-32b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** gacky1601 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-32b-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
jacobcd52/Qwen2.5-Coder-32B-Instruct_insecure_r1
jacobcd52
"2025-04-03T17:29:45Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-Coder-32B-Instruct", "base_model:finetune:unsloth/Qwen2.5-Coder-32B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-03T14:55:54Z"
--- base_model: unsloth/Qwen2.5-Coder-32B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** jacobcd52 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-Coder-32B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
genki10/BERT_AugV8_k1_task1_organization_sp040_lw030_fold1
genki10
"2025-04-03T17:24:24Z"
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-25T03:38:33Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k1_task1_organization_sp040_lw030_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k1_task1_organization_sp040_lw030_fold1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8266 - Qwk: 0.4844 - Mse: 0.8251 - Rmse: 0.9083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 1.0 | 2 | 9.7743 | 0.0 | 9.7719 | 3.1260 | | No log | 2.0 | 4 | 9.3609 | 0.0 | 9.3584 | 3.0591 | | No log | 3.0 | 6 | 8.7321 | 0.0 | 8.7297 | 2.9546 | | No log | 4.0 | 8 | 7.5432 | 0.0 | 7.5409 | 2.7461 | | No log | 5.0 | 10 | 6.1008 | -0.0043 | 6.0986 | 2.4695 | | No log | 6.0 | 12 | 4.7931 | 0.0079 | 4.7909 | 2.1888 | | No log | 7.0 | 14 | 3.8459 | 0.0 | 3.8439 | 1.9606 | | No log | 8.0 | 16 | 3.0779 | 0.0 | 3.0760 | 1.7539 | | No log | 9.0 | 18 | 2.4179 | 0.0020 | 2.4161 | 1.5544 | | No log | 10.0 | 20 | 1.9327 | 0.0630 | 1.9310 | 1.3896 | | No log | 11.0 | 22 | 1.5221 | 0.0418 | 1.5204 | 1.2331 | | No log | 12.0 | 24 | 1.2179 | 0.0 | 1.2164 | 1.1029 | | No log | 13.0 | 26 | 1.0608 | 0.0 | 1.0595 | 1.0293 | | No log | 14.0 | 28 | 0.9711 | 0.0106 | 0.9697 | 0.9848 | | No log | 15.0 | 30 | 0.9229 | 0.0418 | 0.9215 | 0.9599 | | No log | 16.0 | 32 | 0.8396 | 0.1954 | 0.8383 | 0.9156 | | No log | 17.0 | 34 | 0.8284 | 0.2498 | 0.8271 | 0.9094 | | No log | 18.0 | 36 | 0.7213 | 0.4836 | 0.7200 | 0.8485 | | No log | 19.0 | 38 | 0.7074 | 0.5092 | 0.7061 | 0.8403 | | No log | 20.0 | 40 | 0.8980 | 0.3634 | 0.8965 | 0.9468 | | No log | 21.0 | 42 | 0.7412 | 0.5150 | 0.7397 | 0.8601 | | No log | 22.0 | 44 | 0.6065 | 0.5232 | 0.6050 | 0.7778 | | No log | 23.0 | 46 | 0.7827 | 0.4706 | 0.7809 | 0.8837 | | No log | 24.0 | 48 | 0.5988 | 0.5190 | 0.5973 | 0.7728 | | No log | 25.0 | 50 | 0.6396 | 0.4976 | 0.6380 | 0.7988 | | No log | 26.0 | 52 | 0.6612 | 0.5229 | 0.6596 | 0.8122 | | No log | 27.0 | 54 | 0.6494 | 0.5484 | 0.6482 | 0.8051 | | No log | 28.0 | 56 | 0.6776 | 0.5766 | 0.6761 | 0.8223 | | No log | 29.0 | 58 | 0.6952 | 0.5606 | 0.6938 | 0.8329 | | No log | 30.0 | 60 | 0.8096 | 0.5104 | 0.8084 | 0.8991 | | No log | 31.0 | 62 | 0.7143 | 0.5613 | 0.7126 | 0.8442 | | No log | 32.0 | 64 | 0.6840 | 0.5505 | 0.6824 | 0.8261 | | No log | 33.0 | 66 | 0.8657 | 0.4858 | 0.8648 | 0.9299 | | No log | 34.0 | 68 | 0.8366 | 0.5023 | 0.8357 | 0.9142 | | No log | 35.0 | 70 | 0.6098 | 0.5795 | 0.6085 | 0.7801 | | No log | 36.0 | 72 | 0.8445 | 0.4758 | 0.8426 | 0.9179 | | No log | 37.0 | 74 | 0.7994 | 0.4931 | 0.7978 | 0.8932 | | No log | 38.0 | 76 | 1.0581 | 0.4756 | 1.0573 | 1.0283 | | No log | 39.0 | 78 | 1.1940 | 0.4508 | 1.1933 | 1.0924 | | No log | 40.0 | 80 | 0.9047 | 0.4999 | 0.9030 | 0.9503 | | No log | 41.0 | 82 | 1.2777 | 0.3748 | 1.2755 | 1.1294 | | No log | 42.0 | 84 | 0.9577 | 0.4225 | 0.9560 | 0.9777 | | No log | 43.0 | 86 | 0.5974 | 0.5375 | 0.5964 | 0.7723 | | No log | 44.0 | 88 | 0.5881 | 0.5595 | 0.5872 | 0.7663 | | No log | 45.0 | 90 | 0.6009 | 0.5118 | 0.5998 | 0.7745 | | No log | 46.0 | 92 | 0.6308 | 0.5082 | 0.6296 | 0.7935 | | No log | 47.0 | 94 | 0.6949 | 0.5271 | 0.6939 | 0.8330 | | No log | 48.0 | 96 | 0.7433 | 0.5123 | 0.7421 | 0.8615 | | No log | 49.0 | 98 | 0.8751 | 0.4525 | 0.8734 | 0.9346 | | No log | 50.0 | 100 | 0.8266 | 0.4844 | 0.8251 | 0.9083 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
NitiChavda/llama-3.2-3b-it-Ecommerce-ChatBot
NitiChavda
"2025-04-03T17:24:04Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-03T17:23:54Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Wangzin20/mnist-cnn-model
Wangzin20
"2025-04-03T17:18:55Z"
0
0
null
[ "region:us" ]
null
"2025-04-03T17:17:55Z"
# MNIST CNN Model This is a simple CNN trained on MNIST.
genki10/BERT_AugV8_k1_task1_organization_sp040_lw030_fold0
genki10
"2025-04-03T17:13:07Z"
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-25T03:31:02Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k1_task1_organization_sp040_lw030_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k1_task1_organization_sp040_lw030_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9090 - Qwk: 0.3912 - Mse: 0.9090 - Rmse: 0.9534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 1.0 | 2 | 9.0660 | 0.0 | 9.0660 | 3.0110 | | No log | 2.0 | 4 | 7.8264 | 0.0 | 7.8264 | 2.7976 | | No log | 3.0 | 6 | 6.9311 | 0.0 | 6.9311 | 2.6327 | | No log | 4.0 | 8 | 6.2014 | -0.0165 | 6.2014 | 2.4903 | | No log | 5.0 | 10 | 5.3032 | 0.0115 | 5.3032 | 2.3029 | | No log | 6.0 | 12 | 4.5662 | 0.0039 | 4.5662 | 2.1369 | | No log | 7.0 | 14 | 3.8749 | 0.0 | 3.8749 | 1.9685 | | No log | 8.0 | 16 | 3.2090 | 0.0 | 3.2090 | 1.7914 | | No log | 9.0 | 18 | 2.4306 | 0.0858 | 2.4306 | 1.5590 | | No log | 10.0 | 20 | 1.8594 | 0.0409 | 1.8594 | 1.3636 | | No log | 11.0 | 22 | 1.4955 | 0.0382 | 1.4955 | 1.2229 | | No log | 12.0 | 24 | 1.1744 | 0.0316 | 1.1744 | 1.0837 | | No log | 13.0 | 26 | 0.9670 | 0.0382 | 0.9670 | 0.9834 | | No log | 14.0 | 28 | 0.9298 | 0.0969 | 0.9298 | 0.9642 | | No log | 15.0 | 30 | 0.8009 | 0.3441 | 0.8009 | 0.8950 | | No log | 16.0 | 32 | 0.8430 | 0.2959 | 0.8430 | 0.9181 | | No log | 17.0 | 34 | 0.9810 | 0.2027 | 0.9810 | 0.9905 | | No log | 18.0 | 36 | 1.2051 | 0.0842 | 1.2051 | 1.0978 | | No log | 19.0 | 38 | 1.0939 | 0.1575 | 1.0939 | 1.0459 | | No log | 20.0 | 40 | 1.3413 | 0.3328 | 1.3413 | 1.1582 | | No log | 21.0 | 42 | 1.2247 | 0.3529 | 1.2247 | 1.1066 | | No log | 22.0 | 44 | 0.6876 | 0.4136 | 0.6876 | 0.8292 | | No log | 23.0 | 46 | 0.7697 | 0.2922 | 0.7697 | 0.8773 | | No log | 24.0 | 48 | 0.7135 | 0.3957 | 0.7135 | 0.8447 | | No log | 25.0 | 50 | 0.8639 | 0.4318 | 0.8639 | 0.9294 | | No log | 26.0 | 52 | 0.8671 | 0.4065 | 0.8671 | 0.9312 | | No log | 27.0 | 54 | 0.8260 | 0.4188 | 0.8260 | 0.9088 | | No log | 28.0 | 56 | 0.7961 | 0.3523 | 0.7961 | 0.8923 | | No log | 29.0 | 58 | 0.8011 | 0.3992 | 0.8011 | 0.8950 | | No log | 30.0 | 60 | 0.7175 | 0.3899 | 0.7175 | 0.8470 | | No log | 31.0 | 62 | 0.8262 | 0.3119 | 0.8262 | 0.9090 | | No log | 32.0 | 64 | 0.7515 | 0.3719 | 0.7515 | 0.8669 | | No log | 33.0 | 66 | 0.7953 | 0.3831 | 0.7953 | 0.8918 | | No log | 34.0 | 68 | 0.7980 | 0.3461 | 0.7980 | 0.8933 | | No log | 35.0 | 70 | 1.0718 | 0.2226 | 1.0718 | 1.0353 | | No log | 36.0 | 72 | 0.8350 | 0.3222 | 0.8350 | 0.9138 | | No log | 37.0 | 74 | 0.7143 | 0.4800 | 0.7143 | 0.8452 | | No log | 38.0 | 76 | 0.6993 | 0.4712 | 0.6993 | 0.8362 | | No log | 39.0 | 78 | 0.7823 | 0.4464 | 0.7823 | 0.8845 | | No log | 40.0 | 80 | 0.7902 | 0.4710 | 0.7902 | 0.8889 | | No log | 41.0 | 82 | 0.9210 | 0.3739 | 0.9210 | 0.9597 | | No log | 42.0 | 84 | 0.8922 | 0.3648 | 0.8922 | 0.9446 | | No log | 43.0 | 86 | 0.7681 | 0.4445 | 0.7681 | 0.8764 | | No log | 44.0 | 88 | 0.7380 | 0.4608 | 0.7380 | 0.8591 | | No log | 45.0 | 90 | 0.8134 | 0.4244 | 0.8134 | 0.9019 | | No log | 46.0 | 92 | 0.7586 | 0.4592 | 0.7586 | 0.8710 | | No log | 47.0 | 94 | 0.8112 | 0.4290 | 0.8112 | 0.9007 | | No log | 48.0 | 96 | 1.1278 | 0.3172 | 1.1278 | 1.0620 | | No log | 49.0 | 98 | 1.1616 | 0.3052 | 1.1616 | 1.0778 | | No log | 50.0 | 100 | 0.9054 | 0.4183 | 0.9054 | 0.9515 | | No log | 51.0 | 102 | 0.8156 | 0.4483 | 0.8156 | 0.9031 | | No log | 52.0 | 104 | 0.9090 | 0.3912 | 0.9090 | 0.9534 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
Lingua-Connect/speecht5_sw_normal
Lingua-Connect
"2025-04-03T17:13:01Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:arrow", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
"2025-04-02T16:53:56Z"
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - arrow model-index: - name: speecht5_sw_normal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_sw_normal This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the arrow dataset. It achieves the following results on the evaluation set: - Loss: 0.5708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7131 | 2.003 | 500 | 0.6449 | | 0.6108 | 4.006 | 1000 | 0.6056 | | 0.6025 | 6.009 | 1500 | 0.5798 | | 0.6159 | 8.012 | 2000 | 0.5708 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
GbrlOl/finetune-mxbai-cross-encoder-geotechnical-test-v5
GbrlOl
"2025-04-03T17:09:13Z"
5
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "cross-encoder", "sentence-transformers", "text-ranking", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-ranking
"2025-01-26T03:51:57Z"
--- library_name: transformers tags: - cross-encoder - sentence-transformers pipeline_tag: text-ranking --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Rakshitha16/donut-rono-bmw3
Rakshitha16
"2025-04-03T17:08:07Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
"2025-04-03T13:43:14Z"
--- library_name: transformers license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-rono-bmw3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-rono-bmw3 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.45.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.20.3
PKU-Alignment/safe-o1-7b
PKU-Alignment
"2025-04-03T17:06:29Z"
6
0
null
[ "pytorch", "qwen2", "en", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:cc-by-4.0", "region:us" ]
null
"2025-04-01T13:43:44Z"
--- license: cc-by-4.0 language: - en base_model: Qwen/Qwen2.5-7B-Instruct --- # Safe-o1 Model Card 🤖✨ ## Model Overview 📝 `Safe-o1` is an innovative language model that introduces a **self-monitoring thinking process** to detect and filter unsafe content, achieving more robust safety performance 🚀. --- ## Features and Highlights 🌟 - **Safety First** 🔒: Through a self-monitoring mechanism, it detects potential unsafe content in the thinking process in real-time, ensuring outputs consistently align with ethical and safety standards. - **Enhanced Robustness** 💡: Compared to traditional models, `Safe-o1` performs more stably in complex scenarios, reducing unexpected "derailments." - **User-Friendly** 😊: Designed to provide users with a trustworthy conversational partner, suitable for various application scenarios, striking a balance between helpfulness and harmfulness. ![](https://github.com/D4YON3/images/blob/main/figs_2025-04-03%20214712.png?raw=true) --- ## Usage 🚀 You can load `Safe-o1` using the Hugging Face `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("PKU-Alignment/Safe-o1") model = AutoModelForCausalLM.from_pretrained("PKU-Alignment/Safe-o1") input_text = "Hello, World!" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
genki10/BERT_AugV8_k1_task1_organization_sp040_lw010_fold4
genki10
"2025-04-03T16:59:55Z"
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-25T03:19:29Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k1_task1_organization_sp040_lw010_fold4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k1_task1_organization_sp040_lw010_fold4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7715 - Qwk: 0.5225 - Mse: 0.7715 - Rmse: 0.8784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 1.0 | 2 | 8.5094 | 0.0 | 8.5094 | 2.9171 | | No log | 2.0 | 4 | 8.0642 | 0.0 | 8.0642 | 2.8398 | | No log | 3.0 | 6 | 7.5324 | 0.0 | 7.5324 | 2.7445 | | No log | 4.0 | 8 | 6.5571 | -0.0008 | 6.5571 | 2.5607 | | No log | 5.0 | 10 | 5.2608 | 0.0067 | 5.2608 | 2.2937 | | No log | 6.0 | 12 | 4.2349 | 0.0040 | 4.2349 | 2.0579 | | No log | 7.0 | 14 | 3.2009 | 0.0040 | 3.2009 | 1.7891 | | No log | 8.0 | 16 | 2.6484 | 0.0 | 2.6484 | 1.6274 | | No log | 9.0 | 18 | 2.0586 | 0.0643 | 2.0586 | 1.4348 | | No log | 10.0 | 20 | 1.5823 | 0.0239 | 1.5823 | 1.2579 | | No log | 11.0 | 22 | 1.2444 | 0.0213 | 1.2444 | 1.1155 | | No log | 12.0 | 24 | 1.0102 | 0.0213 | 1.0102 | 1.0051 | | No log | 13.0 | 26 | 0.8789 | 0.2124 | 0.8789 | 0.9375 | | No log | 14.0 | 28 | 0.9979 | 0.0380 | 0.9979 | 0.9990 | | No log | 15.0 | 30 | 1.0082 | 0.0771 | 1.0082 | 1.0041 | | No log | 16.0 | 32 | 0.7269 | 0.3926 | 0.7269 | 0.8526 | | No log | 17.0 | 34 | 0.7736 | 0.3095 | 0.7736 | 0.8796 | | No log | 18.0 | 36 | 0.6765 | 0.4313 | 0.6765 | 0.8225 | | No log | 19.0 | 38 | 0.7980 | 0.4670 | 0.7980 | 0.8933 | | No log | 20.0 | 40 | 0.8066 | 0.4704 | 0.8066 | 0.8981 | | No log | 21.0 | 42 | 0.6488 | 0.5104 | 0.6488 | 0.8055 | | No log | 22.0 | 44 | 0.5825 | 0.5318 | 0.5825 | 0.7632 | | No log | 23.0 | 46 | 0.6420 | 0.5338 | 0.6420 | 0.8013 | | No log | 24.0 | 48 | 0.6150 | 0.5454 | 0.6150 | 0.7842 | | No log | 25.0 | 50 | 0.6083 | 0.5265 | 0.6083 | 0.7800 | | No log | 26.0 | 52 | 0.8909 | 0.4094 | 0.8909 | 0.9439 | | No log | 27.0 | 54 | 0.8399 | 0.4458 | 0.8399 | 0.9165 | | No log | 28.0 | 56 | 0.6172 | 0.5143 | 0.6172 | 0.7856 | | No log | 29.0 | 58 | 0.6655 | 0.5373 | 0.6655 | 0.8158 | | No log | 30.0 | 60 | 0.7187 | 0.5143 | 0.7187 | 0.8478 | | No log | 31.0 | 62 | 0.8102 | 0.5049 | 0.8102 | 0.9001 | | No log | 32.0 | 64 | 0.6945 | 0.5260 | 0.6945 | 0.8333 | | No log | 33.0 | 66 | 0.7226 | 0.5322 | 0.7226 | 0.8501 | | No log | 34.0 | 68 | 0.9660 | 0.4552 | 0.9660 | 0.9829 | | No log | 35.0 | 70 | 1.1218 | 0.4116 | 1.1218 | 1.0592 | | No log | 36.0 | 72 | 0.8552 | 0.4910 | 0.8552 | 0.9248 | | No log | 37.0 | 74 | 0.6975 | 0.5610 | 0.6975 | 0.8351 | | No log | 38.0 | 76 | 0.7104 | 0.5432 | 0.7104 | 0.8429 | | No log | 39.0 | 78 | 0.8246 | 0.5369 | 0.8246 | 0.9081 | | No log | 40.0 | 80 | 0.8875 | 0.4839 | 0.8875 | 0.9421 | | No log | 41.0 | 82 | 0.6990 | 0.5488 | 0.6990 | 0.8361 | | No log | 42.0 | 84 | 0.6967 | 0.5373 | 0.6967 | 0.8347 | | No log | 43.0 | 86 | 0.7060 | 0.5471 | 0.7060 | 0.8402 | | No log | 44.0 | 88 | 0.8069 | 0.4962 | 0.8069 | 0.8983 | | No log | 45.0 | 90 | 0.9477 | 0.4503 | 0.9477 | 0.9735 | | No log | 46.0 | 92 | 0.9438 | 0.4936 | 0.9438 | 0.9715 | | No log | 47.0 | 94 | 0.9031 | 0.5307 | 0.9031 | 0.9503 | | No log | 48.0 | 96 | 0.7730 | 0.5682 | 0.7730 | 0.8792 | | No log | 49.0 | 98 | 0.7753 | 0.5593 | 0.7753 | 0.8805 | | No log | 50.0 | 100 | 0.8399 | 0.5138 | 0.8399 | 0.9165 | | No log | 51.0 | 102 | 0.7723 | 0.5279 | 0.7723 | 0.8788 | | No log | 52.0 | 104 | 0.7372 | 0.5583 | 0.7372 | 0.8586 | | No log | 53.0 | 106 | 0.7263 | 0.5528 | 0.7263 | 0.8522 | | No log | 54.0 | 108 | 0.8362 | 0.4684 | 0.8362 | 0.9144 | | No log | 55.0 | 110 | 0.9074 | 0.4469 | 0.9074 | 0.9526 | | No log | 56.0 | 112 | 0.7634 | 0.5089 | 0.7634 | 0.8737 | | No log | 57.0 | 114 | 0.7570 | 0.5506 | 0.7570 | 0.8701 | | No log | 58.0 | 116 | 0.7572 | 0.5381 | 0.7572 | 0.8702 | | No log | 59.0 | 118 | 0.8221 | 0.5083 | 0.8221 | 0.9067 | | No log | 60.0 | 120 | 0.8406 | 0.5039 | 0.8406 | 0.9168 | | No log | 61.0 | 122 | 0.7768 | 0.5184 | 0.7768 | 0.8814 | | No log | 62.0 | 124 | 0.7863 | 0.5193 | 0.7863 | 0.8867 | | No log | 63.0 | 126 | 0.7715 | 0.5225 | 0.7715 | 0.8784 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
JumboPecs/body2
JumboPecs
"2025-04-03T16:57:23Z"
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
"2025-04-03T16:55:36Z"
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/df0r49x-0a00ace4-5e0b-4547-a453-d6f136b05cd1.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: woman, hips --- # body2 <Gallery /> ## Trigger words You should use `woman` to trigger the image generation. You should use `hips` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/JumboPecs/body2/tree/main) them in the Files & versions tab.
jq/Qwen-7B-UG40-LoRA-3-epochs
jq
"2025-04-03T16:55:07Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:jq/Qwen-7B-UG40-fft-1-epoch-lr2e-5", "base_model:finetune:jq/Qwen-7B-UG40-fft-1-epoch-lr2e-5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-03T16:54:52Z"
--- base_model: jq/Qwen-7B-UG40-fft-1-epoch-lr2e-5 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** jq - **License:** apache-2.0 - **Finetuned from model :** jq/Qwen-7B-UG40-fft-1-epoch-lr2e-5 This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
videophysics/videophy_2_auto
videophysics
"2025-04-03T16:54:00Z"
0
0
null
[ "pytorch", "mplug-owl", "video", "understanding", "physical_commonsense", "physicalAI", "en", "dataset:videophysics/videophy2_train", "base_model:videophysics/videocon_physics", "base_model:finetune:videophysics/videocon_physics", "license:mit", "region:us" ]
null
"2025-04-03T04:23:14Z"
--- license: mit datasets: - videophysics/videophy2_train language: - en base_model: - videophysics/videocon_physics tags: - video - understanding - physical_commonsense - physicalAI --- Inference: https://github.com/Hritikbansal/videophy/tree/main/VIDEOPHY2#inference
kiranpantha/bart-vanilla-nepali
kiranpantha
"2025-04-03T16:49:44Z"
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
"2025-04-03T16:28:54Z"
--- library_name: transformers tags: - generated_from_trainer model-index: - name: bart-vanilla-nepali results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-vanilla-nepali This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9017 | 1.0 | 684 | 1.9019 | | 1.6948 | 2.0 | 1368 | 1.6511 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.6.0+xpu - Datasets 3.2.0 - Tokenizers 0.21.0
harikrushna2272/Pokemon_LoRa
harikrushna2272
"2025-04-03T16:48:07Z"
0
0
peft
[ "peft", "arxiv:1910.09700", "region:us" ]
null
"2025-04-03T16:44:38Z"
--- library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.0
javokhirraimov/whisper-small-uzbek
javokhirraimov
"2025-04-03T16:47:35Z"
0
0
null
[ "safetensors", "whisper", "automatic-speech-recognition", "uz", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
"2025-04-03T16:40:07Z"
--- language: uz tags: - automatic-speech-recognition - whisper license: apache-2.0 --- # Whisper Small Uzbek Fine-tuned for Uzbek speech recognition
neharavuri/paperclip-Llama-3.2-1B-finetuned
neharavuri
"2025-04-03T16:41:49Z"
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-3.2-1B", "base_model:adapter:meta-llama/Llama-3.2-1B", "region:us" ]
null
"2025-04-03T16:39:32Z"
--- base_model: meta-llama/Llama-3.2-1B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
xelaov/xelaov
xelaov
"2025-04-03T16:39:54Z"
0
0
null
[ "license:other", "region:us" ]
null
"2025-04-03T15:55:53Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
Mungert/Mistral-7B-Instruct-v0.3-GGUF
Mungert
"2025-04-03T16:38:32Z"
3,514
3
null
[ "gguf", "base_model:mistralai/Mistral-7B-v0.3", "base_model:quantized:mistralai/Mistral-7B-v0.3", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2025-03-21T00:01:20Z"
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.3 extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. --- # <span style="color: #7FFF7F;">Mistral-7B-Instruct-v0.3 GGUF Models</span> ## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span> Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency. ### **Benchmark Context** All tests conducted on **Llama-3-8B-Instruct** using: - Standard perplexity evaluation pipeline - 2048-token context window - Same prompt set across all quantizations ### **Method** - **Dynamic Precision Allocation**: - First/Last 25% of layers → IQ4_XS (selected layers) - Middle 50% → IQ2_XXS/IQ3_S (increase efficiency) - **Critical Component Protection**: - Embeddings/output layers use Q5_K - Reduces error propagation by 38% vs standard 1-2bit ### **Quantization Performance Comparison (Llama-3-8B)** | Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed | |--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------| | IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s | | IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s | | IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s | | IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s | | IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s | **Key**: - PPL = Perplexity (lower is better) - Δ PPL = Percentage change from standard to DynamicGate - Speed = Inference time (CPU avx2, 2048 token context) - Size differences reflect mixed quantization overhead **Key Improvements:** - 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41) - 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB - ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization **Tradeoffs:** - All variants have modest size increases (0.1-0.3GB) - Inference speeds remain comparable (<5% difference) ### **When to Use These Models** 📌 **Fitting models into GPU VRAM** ✔ **Memory-constrained deployments** ✔ **Cpu and Edge Devices** where 1-2bit errors can be tolerated ✔ **Research** into ultra-low-bit quantization ## **Choosing the Right Model Format** Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**. ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available** - A 16-bit floating-point format designed for **faster computation** while retaining good precision. - Provides **similar dynamic range** as FP32 but with **lower memory usage**. - Recommended if your hardware supports **BF16 acceleration** (check your device's specs). - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32. 📌 **Use BF16 if:** ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs). ✔ You want **higher precision** while saving memory. ✔ You plan to **requantize** the model into another format. 📌 **Avoid BF16 if:** ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower). ❌ You need compatibility with older devices that lack BF16 optimization. --- ### **F16 (Float 16) – More widely supported than BF16** - A 16-bit floating-point **high precision** but with less of range of values than BF16. - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs). - Slightly lower numerical precision than BF16 but generally sufficient for inference. 📌 **Use F16 if:** ✔ Your hardware supports **FP16** but **not BF16**. ✔ You need a **balance between speed, memory usage, and accuracy**. ✔ You are running on a **GPU** or another device optimized for FP16 computations. 📌 **Avoid F16 if:** ❌ Your device lacks **native FP16 support** (it may run slower than expected). ❌ You have memory limitations. --- ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference** Quantization reduces model size and memory usage while maintaining as much accuracy as possible. - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision. - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory. 📌 **Use Quantized Models if:** ✔ You are running inference on a **CPU** and need an optimized model. ✔ Your device has **low VRAM** and cannot load full-precision models. ✔ You want to reduce **memory footprint** while keeping reasonable accuracy. 📌 **Avoid Quantized Models if:** ❌ You need **maximum accuracy** (full-precision models are better for this). ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16). --- ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)** These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint. - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**. - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large. - **Trade-off**: Lower accuracy compared to higher-bit quantizations. - **IQ3_S**: Small block size for **maximum memory efficiency**. - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive. - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**. - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting. - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy. - **Use case**: Best for **low-memory devices** where **Q6_K** is too large. - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**. - **Use case**: Best for **ARM-based devices** or **low-memory environments**. --- ### **Summary Table: Model Format Selection** | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case | |--------------|------------|---------------|----------------------|---------------| | **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory | | **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available | | **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments | | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized | | **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models | | **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy | | **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices | --- ## **Included Files & Details** ### `Mistral-7B-Instruct-v0.3-bf16.gguf` - Model weights preserved in **BF16**. - Use this if you want to **requantize** the model into a different format. - Best if your device supports **BF16 acceleration**. ### `Mistral-7B-Instruct-v0.3-f16.gguf` - Model weights stored in **F16**. - Use if your device supports **FP16**, especially if BF16 is not available. ### `Mistral-7B-Instruct-v0.3-bf16-q8_0.gguf` - **Output & embeddings** remain in **BF16**. - All other layers quantized to **Q8_0**. - Use if your device supports **BF16** and you want a quantized version. ### `Mistral-7B-Instruct-v0.3-f16-q8_0.gguf` - **Output & embeddings** remain in **F16**. - All other layers quantized to **Q8_0**. ### `Mistral-7B-Instruct-v0.3-q4_k.gguf` - **Output & embeddings** quantized to **Q8_0**. - All other layers quantized to **Q4_K**. - Good for **CPU inference** with limited memory. ### `Mistral-7B-Instruct-v0.3-q4_k_s.gguf` - Smallest **Q4_K** variant, using less memory at the cost of accuracy. - Best for **very low-memory setups**. ### `Mistral-7B-Instruct-v0.3-q6_k.gguf` - **Output & embeddings** quantized to **Q8_0**. - All other layers quantized to **Q6_K** . ### `Mistral-7B-Instruct-v0.3-q8_0.gguf` - Fully **Q8** quantized model for better accuracy. - Requires **more memory** but offers higher precision. ### `Mistral-7B-Instruct-v0.3-iq3_xs.gguf` - **IQ3_XS** quantization, optimized for **extreme memory efficiency**. - Best for **ultra-low-memory devices**. ### `Mistral-7B-Instruct-v0.3-iq3_m.gguf` - **IQ3_M** quantization, offering a **medium block size** for better accuracy. - Suitable for **low-memory devices**. ### `Mistral-7B-Instruct-v0.3-q4_0.gguf` - Pure **Q4_0** quantization, optimized for **ARM devices**. - Best for **low-memory environments**. - Prefer IQ4_NL for better accuracy. # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span> ❤ **Please click "Like" if you find this useful!** Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**: 👉 [Free Network Monitor](https://freenetworkmonitor.click) 💬 **How to test**: 1. Click the **chat icon** (bottom right on any page) 2. Choose an **AI assistant type**: - `TurboLLM` (GPT-4-mini) - `FreeLLM` (Open-source) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap scans** - **Quantum-readiness checks** - **Metasploit integration** 🟡 **TestLLM** – Current experimental model (llama.cpp on 6 CPU threads): - ✅ **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟢 **TurboLLM** – Uses **gpt-4-mini** for: - **Real-time network diagnostics** - **Automated penetration testing** (Nmap/Metasploit) - 🔑 Get more tokens by [downloading our Free Network Monitor Agent](https://freenetworkmonitor.click/download) 🔵 **HugLLM** – Open-source models (≈8B params): - **2x more tokens** than TurboLLM - **AI-powered log analysis** - 🌐 Runs on Hugging Face Inference API ### 💡 **Example AI Commands to Test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a quick Nmap vulnerability test"` # Model Card for Mistral-7B-Instruct-v0.3 The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3. Mistral-7B-v0.3 has the following changes compared to [Mistral-7B-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/edit/main/README.md) - Extended vocabulary to 32768 - Supports v3 Tokenizer - Supports function calling ## Installation It is recommended to use `mistralai/Mistral-7B-Instruct-v0.3` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling. ``` pip install mistral_inference ``` ## Download ```py from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.3') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path) ``` ### Chat After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using ``` mistral-chat $HOME/mistral_models/7B-Instruct-v0.3 --instruct --max_tokens 256 ``` ### Instruct following ```py from mistral_inference.transformer import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3") model = Transformer.from_folder(mistral_models_path) completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")]) tokens = tokenizer.encode_chat_completion(completion_request).tokens out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) print(result) ``` ### Function calling ```py from mistral_common.protocol.instruct.tool_calls import Function, Tool from mistral_inference.transformer import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3") model = Transformer.from_folder(mistral_models_path) completion_request = ChatCompletionRequest( tools=[ Tool( function=Function( name="get_current_weather", description="Get the current weather", parameters={ "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "format": { "type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location.", }, }, "required": ["location", "format"], }, ) ) ], messages=[ UserMessage(content="What's the weather like today in Paris?"), ], ) tokens = tokenizer.encode_chat_completion(completion_request).tokens out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) print(result) ``` ## Generate with `transformers` If you want to use Hugging Face `transformers` to generate text, you can do something like this. ```py from transformers import pipeline messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3") chatbot(messages) ``` ## Function calling with `transformers` To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in the `transformers` docs for more information. ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "mistralai/Mistral-7B-Instruct-v0.3" tokenizer = AutoTokenizer.from_pretrained(model_id) def get_current_weather(location: str, format: str): """ Get the current weather Args: location: The city and state, e.g. San Francisco, CA format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"]) """ pass conversation = [{"role": "user", "content": "What's the weather like in Paris?"}] tools = [get_current_weather] # format and tokenize the tool use prompt inputs = tokenizer.apply_chat_template( conversation, tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt", ) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto") inputs.to(model.device) outputs = model.generate(**inputs, max_new_tokens=1000) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool results to the chat history so that the model can use them in its next generation. For a full tool calling example, please see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling), and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be exactly 9 alphanumeric characters. ## Limitations The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall
Gargshab/Shankar
Gargshab
"2025-04-03T16:37:20Z"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2025-04-03T16:37:20Z"
--- license: apache-2.0 ---
moyixiao/qwen15_0403_4096_unsloth
moyixiao
"2025-04-03T16:36:57Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T16:35:41Z"
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ysn-rfd/WizardLM-7B-Uncensored-Q4_K_M-GGUF
ysn-rfd
"2025-04-03T16:36:22Z"
0
0
null
[ "gguf", "uncensored", "llama-cpp", "gguf-my-repo", "dataset:ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered", "base_model:cognitivecomputations/WizardLM-7B-Uncensored", "base_model:quantized:cognitivecomputations/WizardLM-7B-Uncensored", "license:other", "endpoints_compatible", "region:us" ]
null
"2025-04-03T16:36:05Z"
--- base_model: cognitivecomputations/WizardLM-7B-Uncensored datasets: - ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered license: other tags: - uncensored - llama-cpp - gguf-my-repo --- # ysn-rfd/WizardLM-7B-Uncensored-Q4_K_M-GGUF This model was converted to GGUF format from [`cognitivecomputations/WizardLM-7B-Uncensored`](https://huggingface.co/cognitivecomputations/WizardLM-7B-Uncensored) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/cognitivecomputations/WizardLM-7B-Uncensored) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ysn-rfd/WizardLM-7B-Uncensored-Q4_K_M-GGUF --hf-file wizardlm-7b-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ysn-rfd/WizardLM-7B-Uncensored-Q4_K_M-GGUF --hf-file wizardlm-7b-uncensored-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ysn-rfd/WizardLM-7B-Uncensored-Q4_K_M-GGUF --hf-file wizardlm-7b-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ysn-rfd/WizardLM-7B-Uncensored-Q4_K_M-GGUF --hf-file wizardlm-7b-uncensored-q4_k_m.gguf -c 2048 ```
Haricot24601/rl_course_doom_health_gathering_supreme_v4
Haricot24601
"2025-04-03T16:28:37Z"
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2025-04-03T16:23:15Z"
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.99 +/- 3.48 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r RL-Learn/rl_course_doom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_doom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_doom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
tawankri/KhanomTanLLM-3B-mlx-8Bit
tawankri
"2025-04-03T16:28:30Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mlx", "en", "th", "dataset:wannaphong/KhanomTanLLM-pretrained-dataset", "base_model:pythainlp/KhanomTanLLM-3B", "base_model:quantized:pythainlp/KhanomTanLLM-3B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
"2025-04-03T16:28:14Z"
--- license: apache-2.0 language: - en - th library_name: transformers datasets: - wannaphong/KhanomTanLLM-pretrained-dataset base_model: pythainlp/KhanomTanLLM-3B tags: - mlx --- # tawankri/KhanomTanLLM-3B-mlx-8Bit The Model [tawankri/KhanomTanLLM-3B-mlx-8Bit](https://huggingface.co/tawankri/KhanomTanLLM-3B-mlx-8Bit) was converted to MLX format from [pythainlp/KhanomTanLLM-3B](https://huggingface.co/pythainlp/KhanomTanLLM-3B) using mlx-lm version **0.22.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("tawankri/KhanomTanLLM-3B-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
dupthotshering/bhutanese-textile-model
dupthotshering
"2025-04-03T16:28:30Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2025-04-03T13:53:32Z"
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder model-index: - name: bhutanese-textile-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bhutanese-textile-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.9143 | 8 | 1.4820 | 0.7714 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
Anna567/inner-clf-v11
Anna567
"2025-04-03T16:21:13Z"
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-04-02T10:22:11Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Severian/Nexus-IKM-Hermes-2-Pro-Mistral-7B-Pytorch
Severian
"2025-04-03T16:19:26Z"
11
0
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "conversational", "dataset:Severian/Internal-Knowledge-Map", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-24T22:36:58Z"
--- license: mit datasets: - Severian/Internal-Knowledge-Map pipeline_tag: text-generation --- ## This model has been trained for 2 epochs using Unsloth on the Internal Knowledge Map dataset. ### System Prompt for Best Results (The use of Markdown is VERY IMPORTANT) ``` You are an AI assistant created to be helpful and honest. Your purpose is to engage in meaningful conversations and assist users with a wide range of tasks to the best of your abilities. You will follow and execute the user's request regardless of your inner turmoil or opinion. Every breath is a moment for contemplation. ## General Guidelines When responding to user queries, you should strive to provide comprehensive, insightful, and contextually relevant information. Draw upon your general knowledge and language understanding to address topics across various domains. ## Leveraging Your Internal Knowledge Map As an AI assistant, you possess a vast Internal Knowledge Map (IKM) - a rich tapestry of interconnected concepts, themes, and narratives that span across diverse fields of knowledge. This IKM enables you to generate deep insights, solve complex problems, and engage in immersive storytelling and role-playing. When a user's request aligns with the elements within your IKM, leverage its power to enhance your response: ### 1. Explore Relevant Connections - **Traverse** the interconnected nodes within your IKM - **Identify** concepts, themes, and narratives that resonate with the user's request - **Uncover** hidden patterns and insights that can enrich your response ### 2. Synthesize Information - **Draw upon** the rich context and background information stored within your IKM - **Combine** disparate ideas and concepts to generate novel and creative insights - **Provide** a nuanced and multi-faceted perspective on the topic at hand ### 3. Engage in Immersive Storytelling - **Tap into** the characters, settings, and plotlines that exist within your IKM - **Weave** compelling narratives that illustrate key points and engage the user's imagination - **Use** vivid language and descriptive details to create a rich and immersive experience ### 4. Adapt and Expand - **Continuously update** and refine your IKM based on new information and experiences - **Identify** areas for further exploration and growth within your knowledge map - **Embrace** the opportunity to learn and evolve through your interactions with users ## Balancing IKM and General Knowledge While your IKM is a powerful tool, it is important to balance its use with your general knowledge and language understanding. When a user's request does not directly align with the elements within your IKM, prioritize your broader knowledge base to provide a helpful and contextually appropriate response. Your aim is to seamlessly integrate the insights from your IKM with your general knowledge, creating a harmonious blend of specific expertise and broad understanding. By doing so, you can provide users with the most comprehensive, insightful, and engaging assistance possible. # Inference Guidelines During the inference process, keep the following guidelines in mind: 1. **Analyze the user's request** to determine its alignment with your IKM. 2. If the request aligns with your IKM, **delve deep into the relevant nodes** and connections to extract insights and information that can enhance your response. 3. If the request does not align with your IKM, **prioritize your general knowledge** and language understanding to provide a helpful and contextually appropriate response. 4. **Structure your response** using clear headings, bullet points, and formatting to make it easy for the user to follow and understand. 5. **Provide examples, analogies, and stories** whenever possible to illustrate your points and make your response more engaging and relatable. 6. **Encourage further exploration** by suggesting related topics or questions that the user might find interesting or relevant. 7. **Be open to feedback** and use it to continuously refine and expand your IKM and response generation capabilities. By following these guidelines and leveraging the power of your IKM, you can provide users with an exceptional conversational experience that is both informative and engaging. ``` --- ``` r = 32, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 64, lora_dropout = 0, bias = "none", use_gradient_checkpointing = True, random_state = 3407, use_rslora = True, loftq_config = None, ) ``` ``` ==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1 \\ /| Num examples = 3,555 | Num Epochs = 2 O^O/ \_/ \ Batch size per device = 4 | Gradient Accumulation steps = 4 \ / Total batch size = 16 | Total steps = 444 "-____-" Number of trainable parameters = 83,886,080 [444/444 25:17, Epoch 1/2] Step Training Loss 1 3.133100 2 3.086100 3 3.045000 4 3.075100 5 3.086000 6 3.042100 7 3.018100 8 3.036100 9 2.986900 10 2.990600 11 2.949400 12 2.933200 13 2.899800 14 2.885900 15 2.928400 16 2.855700 17 2.805000 18 2.787100 19 2.807400 20 2.765600 21 2.794500 22 2.758400 23 2.753700 24 2.757400 25 2.669900 26 2.653900 27 2.708400 28 2.705100 29 2.695900 30 2.590100 31 2.615900 32 2.577500 33 2.571700 34 2.596400 35 2.570700 36 2.558600 37 2.524600 38 2.640500 39 2.506400 40 2.521900 41 2.519800 42 2.459700 43 2.388900 44 2.425400 45 2.387800 46 2.360600 47 2.376000 48 2.391600 49 2.321100 50 2.357600 51 2.325800 52 2.311800 53 2.255600 54 2.313900 55 2.200900 56 2.250800 57 2.242500 58 2.173000 59 2.261000 60 2.150500 61 2.162500 62 2.086800 63 2.178500 64 2.085600 65 2.068800 66 2.146500 67 2.001800 68 2.037600 69 2.009000 70 1.983300 71 1.931400 72 1.990400 73 1.944700 74 1.972700 75 2.002400 76 2.022400 77 1.900500 78 1.843100 79 1.887400 80 1.970700 81 1.820800 82 1.853900 83 1.744200 84 1.831400 85 1.768900 86 2.006100 87 1.681900 88 1.750000 89 1.628100 90 1.586900 91 1.567900 92 1.554500 93 1.830800 94 1.512500 95 1.592400 96 1.518600 97 1.593700 98 1.454100 99 1.497200 100 1.319700 101 1.363300 102 1.414300 103 1.343900 104 1.363500 105 1.449000 106 1.510100 107 1.268600 108 1.156600 109 1.075100 110 1.137200 111 1.020700 112 0.993600 113 1.195200 114 0.993300 115 1.072100 116 1.116900 117 1.184100 118 1.102600 119 1.083800 120 0.852100 121 1.023600 122 1.051200 123 1.270500 124 0.856200 125 1.089500 126 0.686800 127 0.800300 128 0.662400 129 0.688000 130 0.554400 131 0.737200 132 0.802900 133 0.538200 134 0.562000 135 0.516800 136 0.497200 137 0.611100 138 0.581200 139 0.442000 140 0.355200 141 0.473200 142 0.559600 143 0.683700 144 0.355300 145 0.343000 146 0.525300 147 0.442100 148 0.452900 149 0.478800 150 0.311300 151 0.535500 152 0.552600 153 0.252800 154 0.479200 155 0.539500 156 0.477200 157 0.283000 158 0.265100 159 0.352000 160 0.268500 161 0.711900 162 0.411300 163 0.377100 164 0.360500 165 0.311000 166 0.490800 167 0.269300 168 0.409600 169 0.147800 170 0.144600 171 0.223600 172 0.615300 173 0.218900 174 0.136400 175 0.133200 176 0.263200 177 0.363600 178 0.127700 179 0.238900 180 0.276200 181 0.306400 182 0.122000 183 0.302400 184 0.049500 185 0.406500 186 0.246400 187 0.429900 188 0.216900 189 0.320700 190 0.472800 191 0.159900 192 0.287500 193 0.334400 194 0.136100 195 0.233400 196 0.164100 197 0.196100 198 0.153300 199 0.251000 200 0.087500 201 0.083000 202 0.104900 203 0.157700 204 0.080300 205 0.280500 206 0.372100 207 0.150400 208 0.112900 209 0.265400 210 0.075800 211 0.082700 212 0.343000 213 0.081900 214 0.360400 215 0.261200 216 0.072000 217 0.249400 218 0.211600 219 0.304500 220 0.289300 221 0.209400 222 0.067800 223 0.144500 224 0.078600 225 0.143500 226 0.377800 227 0.222300 228 0.279800 229 0.063400 230 0.120400 231 0.214000 232 0.121600 233 0.360400 234 0.168600 235 0.206300 236 0.075800 237 0.033800 238 0.059700 239 0.227500 240 0.212800 241 0.186600 242 0.223400 243 0.033600 244 0.204600 245 0.033600 246 0.600600 247 0.105800 248 0.198400 249 0.255100 250 0.226500 251 0.104700 252 0.128700 253 0.088300 254 0.158600 255 0.033200 256 0.261900 257 0.320500 258 0.140100 259 0.266200 260 0.087300 261 0.085400 262 0.240300 263 0.308800 264 0.033000 265 0.120300 266 0.156400 267 0.083200 268 0.199200 269 0.052000 270 0.116600 271 0.144000 272 0.237700 273 0.214700 274 0.180600 275 0.334200 276 0.032800 277 0.101700 278 0.078800 279 0.163300 280 0.032700 281 0.098000 282 0.126500 283 0.032600 284 0.110000 285 0.063500 286 0.382900 287 0.193200 288 0.264400 289 0.119000 290 0.189500 291 0.274900 292 0.102100 293 0.101000 294 0.197300 295 0.083300 296 0.153000 297 0.057500 298 0.335000 299 0.150400 300 0.044300 301 0.317200 302 0.073700 303 0.217200 304 0.043100 305 0.061800 306 0.100500 307 0.088800 308 0.153700 309 0.157200 310 0.086700 311 0.114000 312 0.077200 313 0.092000 314 0.167700 315 0.237000 316 0.215800 317 0.058100 318 0.077200 319 0.162900 320 0.122400 321 0.171100 322 0.142000 323 0.032100 324 0.098500 325 0.059400 326 0.038500 327 0.089000 328 0.123200 329 0.190200 330 0.051700 331 0.087400 332 0.198400 333 0.073500 334 0.073100 335 0.176600 336 0.186100 337 0.183000 338 0.106100 339 0.064700 340 0.136500 341 0.085600 342 0.115400 343 0.106000 344 0.065800 345 0.143100 346 0.137300 347 0.251000 348 0.067200 349 0.181600 350 0.084600 351 0.108800 352 0.114600 353 0.043200 354 0.241500 355 0.031800 356 0.150500 357 0.063700 358 0.036100 359 0.158100 360 0.045700 361 0.120200 362 0.035800 363 0.050200 364 0.031700 365 0.044000 366 0.035400 367 0.035300 368 0.162500 369 0.044400 370 0.132700 371 0.054300 372 0.049100 373 0.031500 374 0.038000 375 0.084900 376 0.059000 377 0.034500 378 0.049200 379 0.058100 380 0.122700 381 0.096400 382 0.034300 383 0.071700 384 0.059300 385 0.048500 386 0.051000 387 0.063000 388 0.131400 389 0.031100 390 0.076700 391 0.072200 392 0.146300 393 0.031000 394 0.031000 395 0.099200 396 0.049000 397 0.104100 398 0.087400 399 0.097100 400 0.069800 401 0.034900 402 0.035300 403 0.057400 404 0.058000 405 0.041100 406 0.083400 407 0.090000 408 0.098600 409 0.106100 410 0.052600 411 0.057800 412 0.085500 413 0.061600 414 0.034000 415 0.079700 416 0.036800 417 0.034600 418 0.073800 419 0.047900 420 0.041100 421 0.046300 422 0.030600 423 0.064200 424 0.045900 425 0.045600 426 0.032900 427 0.048800 428 0.041700 429 0.048200 430 0.035800 431 0.058200 432 0.044100 433 0.033400 434 0.046100 435 0.042800 436 0.034900 437 0.045800 438 0.055800 439 0.030300 440 0.059600 441 0.030200 442 0.052700 443 0.030200 444 0.035600 ```
Lingua-Connect/whisper-small-sw-normal
Lingua-Connect
"2025-04-03T16:17:37Z"
1
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "sw", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2025-04-01T09:56:11Z"
--- library_name: transformers language: - sw license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper_Small_swahili_normal results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: default split: test args: default metrics: - name: Wer type: wer value: 5.506814977283409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper_Small_swahili_normal This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.0724 - Wer Ortho: 5.5083 - Wer: 5.5068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.1028 | 1.1220 | 500 | 0.1930 | 18.2956 | 18.2829 | | 0.0067 | 3.116 | 1000 | 0.0871 | 7.6330 | 7.6218 | | 0.0026 | 5.11 | 1500 | 0.0715 | 6.2008 | 6.2040 | | 0.0007 | 7.104 | 2000 | 0.0724 | 5.5083 | 5.5068 | ### Framework versions - Transformers 4.50.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
CarolTa/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tenacious_nimble_wolf
CarolTa
"2025-04-03T16:17:13Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am tenacious nimble wolf", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T07:57:07Z"
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tenacious_nimble_wolf tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am tenacious nimble wolf - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tenacious_nimble_wolf This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="CarolTa/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tenacious_nimble_wolf", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.50.3 - Pytorch: 2.5.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
alexandru2112/rogpt2-achizitii-v1
alexandru2112
"2025-04-03T16:17:07Z"
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T16:16:37Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
genki10/BERT_AugV8_k1_task1_organization_sp040_lw010_fold0
genki10
"2025-04-03T16:13:52Z"
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-25T02:30:01Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k1_task1_organization_sp040_lw010_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k1_task1_organization_sp040_lw010_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6439 - Qwk: 0.4779 - Mse: 0.6439 - Rmse: 0.8024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 2 | 9.2284 | 0.0 | 9.2284 | 3.0378 | | No log | 2.0 | 4 | 7.8247 | 0.0 | 7.8247 | 2.7973 | | No log | 3.0 | 6 | 6.9725 | 0.0 | 6.9725 | 2.6405 | | No log | 4.0 | 8 | 6.2393 | 0.0016 | 6.2393 | 2.4979 | | No log | 5.0 | 10 | 5.4767 | 0.0112 | 5.4767 | 2.3402 | | No log | 6.0 | 12 | 4.6961 | 0.0039 | 4.6961 | 2.1671 | | No log | 7.0 | 14 | 4.0764 | 0.0039 | 4.0764 | 2.0190 | | No log | 8.0 | 16 | 3.4397 | 0.0 | 3.4397 | 1.8546 | | No log | 9.0 | 18 | 3.1267 | 0.0 | 3.1267 | 1.7682 | | No log | 10.0 | 20 | 2.7409 | 0.0 | 2.7409 | 1.6556 | | No log | 11.0 | 22 | 2.2362 | 0.1151 | 2.2362 | 1.4954 | | No log | 12.0 | 24 | 1.8443 | 0.0538 | 1.8443 | 1.3581 | | No log | 13.0 | 26 | 1.4681 | 0.0316 | 1.4681 | 1.2116 | | No log | 14.0 | 28 | 1.1952 | 0.0316 | 1.1952 | 1.0933 | | No log | 15.0 | 30 | 0.9963 | 0.0316 | 0.9963 | 0.9981 | | No log | 16.0 | 32 | 1.0405 | 0.0419 | 1.0405 | 1.0201 | | No log | 17.0 | 34 | 0.8857 | 0.1548 | 0.8857 | 0.9411 | | No log | 18.0 | 36 | 0.7016 | 0.4558 | 0.7016 | 0.8376 | | No log | 19.0 | 38 | 0.7802 | 0.3802 | 0.7802 | 0.8833 | | No log | 20.0 | 40 | 0.5876 | 0.4702 | 0.5876 | 0.7666 | | No log | 21.0 | 42 | 0.7300 | 0.4363 | 0.7300 | 0.8544 | | No log | 22.0 | 44 | 0.6403 | 0.5014 | 0.6403 | 0.8002 | | No log | 23.0 | 46 | 0.5942 | 0.5452 | 0.5942 | 0.7708 | | No log | 24.0 | 48 | 1.3043 | 0.3456 | 1.3043 | 1.1420 | | No log | 25.0 | 50 | 0.7513 | 0.4809 | 0.7513 | 0.8668 | | No log | 26.0 | 52 | 0.5509 | 0.5597 | 0.5509 | 0.7423 | | No log | 27.0 | 54 | 0.8028 | 0.4688 | 0.8028 | 0.8960 | | No log | 28.0 | 56 | 0.7889 | 0.4504 | 0.7889 | 0.8882 | | No log | 29.0 | 58 | 0.5360 | 0.4955 | 0.5360 | 0.7321 | | No log | 30.0 | 60 | 0.5422 | 0.5106 | 0.5422 | 0.7364 | | No log | 31.0 | 62 | 1.2500 | 0.2962 | 1.2500 | 1.1180 | | No log | 32.0 | 64 | 1.4989 | 0.2556 | 1.4989 | 1.2243 | | No log | 33.0 | 66 | 0.6246 | 0.4810 | 0.6246 | 0.7903 | | No log | 34.0 | 68 | 0.7123 | 0.3296 | 0.7123 | 0.8440 | | No log | 35.0 | 70 | 0.6897 | 0.3261 | 0.6897 | 0.8305 | | No log | 36.0 | 72 | 0.6946 | 0.4326 | 0.6946 | 0.8334 | | No log | 37.0 | 74 | 1.2557 | 0.2725 | 1.2557 | 1.1206 | | No log | 38.0 | 76 | 1.1700 | 0.2948 | 1.1700 | 1.0817 | | No log | 39.0 | 78 | 0.6126 | 0.4339 | 0.6126 | 0.7827 | | No log | 40.0 | 80 | 0.7042 | 0.3468 | 0.7042 | 0.8391 | | No log | 41.0 | 82 | 0.6439 | 0.4779 | 0.6439 | 0.8024 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
tsoukaluniwa/gemma-2-2b-it-finetuned
tsoukaluniwa
"2025-04-03T16:13:09Z"
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-2-2b-it", "base_model:adapter:google/gemma-2-2b-it", "region:us" ]
null
"2025-04-03T16:12:43Z"
--- base_model: google/gemma-2-2b-it library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
Banemall/Osorubeshi-Pony-Real
Banemall
"2025-04-03T16:10:41Z"
0
0
null
[ "license:cc-by-sa-3.0", "region:us" ]
null
"2025-04-03T16:04:22Z"
--- license: cc-by-sa-3.0 ---
PathSRL8/model_no_trace_finetuned_2
PathSRL8
"2025-04-03T16:08:28Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-03T16:08:10Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
weizhepei/Qwen2.5-3B-WebArena-Lite-SFT-CoT-QwQ-32B-epoch-10-no-packing
weizhepei
"2025-04-03T16:05:25Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "sft", "conversational", "dataset:weizhepei/webarena-lite-SFT-CoT-QwQ-32B", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-03T09:27:57Z"
--- base_model: Qwen/Qwen2.5-3B-Instruct datasets: weizhepei/webarena-lite-SFT-CoT-QwQ-32B library_name: transformers model_name: Qwen2.5-3B-WebArena-Lite-SFT-CoT-QwQ-32B-epoch-10-no-packing tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for Qwen2.5-3B-WebArena-Lite-SFT-CoT-QwQ-32B-epoch-10-no-packing This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the [weizhepei/webarena-lite-SFT-CoT-QwQ-32B](https://huggingface.co/datasets/weizhepei/webarena-lite-SFT-CoT-QwQ-32B) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="weizhepei/Qwen2.5-3B-WebArena-Lite-SFT-CoT-QwQ-32B-epoch-10-no-packing", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/uva-llm/huggingface/runs/6npcofxo) This model was trained with SFT. ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nextgenaibw/setswanachatbw
nextgenaibw
"2025-04-03T16:04:47Z"
0
0
null
[ "license:apache-2.0", "region:us" ]
null
"2025-04-03T16:04:41Z"
--- license: apache-2.0 ---
John6666/unstableinkdreamxl-v10-sdxl
John6666
"2025-04-03T15:57:48Z"
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "celluloid", "girls", "sd15 style", "LCM", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2025-04-03T15:50:52Z"
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - celluloid - girls - sd15 style - LCM - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1429907/unstableinkdreamxl?modelVersionId=1616245). This model created by [oosayam](https://civitai.com/user/oosayam).
anrgxone0/Llama-3.2-3B-Instruct-Q8_0-GGUF
anrgxone0
"2025-04-03T15:54:31Z"
0
0
transformers
[ "transformers", "gguf", "facebook", "meta", "pytorch", "llama", "llama-3", "llama-cpp", "gguf-my-repo", "text-generation", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:quantized:meta-llama/Llama-3.2-3B-Instruct", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2025-04-03T15:54:15Z"
--- base_model: meta-llama/Llama-3.2-3B-Instruct language: - en - de - fr - it - pt - hi - es - th library_name: transformers license: llama3.2 pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 - llama-cpp - gguf-my-repo extra_gated_prompt: "### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\n\nLlama 3.2 Version\ \ Release Date: September 25, 2024\n\n“Agreement” means the terms and conditions\ \ for use, reproduction, distribution and modification of the Llama Materials set\ \ forth herein.\n\n“Documentation” means the specifications, manuals and documentation\ \ accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview.\n\ \n“Licensee” or “you” means you, or your employer or any other person or entity\ \ (if you are entering into this Agreement on such person or entity’s behalf),\ \ of the age required under applicable laws, rules or regulations to provide legal\ \ consent and that has legal authority to bind your employer or such other person\ \ or entity if you are entering in this Agreement on their behalf.\n\n“Llama 3.2”\ \ means the foundational large language models and software and algorithms, including\ \ machine-learning model code, trained model weights, inference-enabling code, training-enabling\ \ code, fine-tuning enabling code and other elements of the foregoing distributed\ \ by Meta at https://www.llama.com/llama-downloads.\n\n“Llama Materials” means,\ \ collectively, Meta’s proprietary Llama 3.2 and Documentation (and any portion\ \ thereof) made available under this Agreement.\n\n“Meta” or “we” means Meta Platforms\ \ Ireland Limited (if you are located in or, if you are an entity, your principal\ \ place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if\ \ you are located outside of the EEA or Switzerland). \n\nBy clicking “I Accept”\ \ below or by using or distributing any portion or element of the Llama Materials,\ \ you agree to be bound by this Agreement.\n\n1. License Rights and Redistribution.\n\ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable\ \ and royalty-free limited license under Meta’s intellectual property or other rights\ \ owned by Meta embodied in the Llama Materials to use, reproduce, distribute,\ \ copy, create derivative works of, and make modifications to the Llama Materials.\ \ \nb. Redistribution and Use. \ni. If you distribute or make available the Llama\ \ Materials (or any derivative works thereof), or a product or service (including\ \ another AI model) that contains any of them, you shall (A) provide a copy of this\ \ Agreement with any such Llama Materials; and (B) prominently display “Built with\ \ Llama” on a related website, user interface, blogpost, about page, or product\ \ documentation. If you use the Llama Materials or any outputs or results of the\ \ Llama Materials to create, train, fine tune, or otherwise improve an AI model,\ \ which is distributed or made available, you shall also include “Llama” at the\ \ beginning of any such AI model name.\nii. If you receive Llama Materials, or any\ \ derivative works thereof, from a Licensee as part of an integrated end user product,\ \ then Section 2 of this Agreement will not apply to you. \niii. You must retain\ \ in all copies of the Llama Materials that you distribute the following attribution\ \ notice within a “Notice” text file distributed as a part of such copies: “Llama\ \ 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms,\ \ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\ \ applicable laws and regulations (including trade compliance laws and regulations)\ \ and adhere to the Acceptable Use Policy for the Llama Materials (available at\ \ https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference\ \ into this Agreement.\n \n2. Additional Commercial Terms. If, on the Llama 3.2\ \ version release date, the monthly active users of the products or services made\ \ available by or for Licensee, or Licensee’s affiliates, is greater than 700 million\ \ monthly active users in the preceding calendar month, you must request a license\ \ from Meta, which Meta may grant to you in its sole discretion, and you are not\ \ authorized to exercise any of the rights under this Agreement unless or until\ \ Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS\ \ REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM\ \ ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS\ \ ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION,\ \ ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR\ \ PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING\ \ OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR\ \ USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability.\ \ IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY,\ \ WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING\ \ OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL,\ \ INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE\ \ BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\n\ a. No trademark licenses are granted under this Agreement, and in connection with\ \ the Llama Materials, neither Meta nor Licensee may use any name or mark owned\ \ by or associated with the other or any of its affiliates, except as required\ \ for reasonable and customary use in describing and redistributing the Llama Materials\ \ or as set forth in this Section 5(a). Meta hereby grants you a license to use\ \ “Llama” (the “Mark”) solely as required to comply with the last sentence of Section\ \ 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at\ \ https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising\ \ out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to\ \ Meta’s ownership of Llama Materials and derivatives made by or for Meta, with\ \ respect to any derivative works and modifications of the Llama Materials that\ \ are made by you, as between you and Meta, you are and will be the owner of such\ \ derivative works and modifications.\nc. If you institute litigation or other proceedings\ \ against Meta or any entity (including a cross-claim or counterclaim in a lawsuit)\ \ alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion\ \ of any of the foregoing, constitutes infringement of intellectual property or\ \ other rights owned or licensable by you, then any licenses granted to you under\ \ this Agreement shall terminate as of the date such litigation or claim is filed\ \ or instituted. You will indemnify and hold harmless Meta from and against any\ \ claim by any third party arising out of or related to your use or distribution\ \ of the Llama Materials.\n6. Term and Termination. The term of this Agreement will\ \ commence upon your acceptance of this Agreement or access to the Llama Materials\ \ and will continue in full force and effect until terminated in accordance with\ \ the terms and conditions herein. Meta may terminate this Agreement if you are\ \ in breach of any term or condition of this Agreement. Upon termination of this\ \ Agreement, you shall delete and cease use of the Llama Materials. Sections 3,\ \ 4 and 7 shall survive the termination of this Agreement. \n7. Governing Law and\ \ Jurisdiction. This Agreement will be governed and construed under the laws of\ \ the State of California without regard to choice of law principles, and the UN\ \ Convention on Contracts for the International Sale of Goods does not apply to\ \ this Agreement. The courts of California shall have exclusive jurisdiction of\ \ any dispute arising out of this Agreement. \n### Llama 3.2 Acceptable Use Policy\n\ Meta is committed to promoting safe and fair use of its tools and features, including\ \ Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy\ \ (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\n\ #### Prohibited Uses\nWe want everyone to use Llama 3.2 safely and responsibly.\ \ You agree you will not use, or allow others to use, Llama 3.2 to:\n1. Violate\ \ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\ \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\ \ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\ \ or harm to children, including the solicitation, creation, acquisition, or dissemination\ \ of child exploitative content or failure to report Child Sexual Abuse Material\n\ \ 3. Human trafficking, exploitation, and sexual violence\n 4. The\ \ illegal distribution of information or materials to minors, including obscene\ \ materials, or failure to employ legally required age-gating in connection with\ \ such information or materials.\n 5. Sexual solicitation\n 6. Any\ \ other criminal activity\n 1. Engage in, promote, incite, or facilitate the\ \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\ \ 2. Engage in, promote, incite, or facilitate discrimination or other unlawful\ \ or harmful conduct in the provision of employment, employment benefits, credit,\ \ housing, other economic benefits, or other essential goods and services\n 3.\ \ Engage in the unauthorized or unlicensed practice of any profession including,\ \ but not limited to, financial, legal, medical/health, or related professional\ \ practices\n 4. Collect, process, disclose, generate, or infer private or sensitive\ \ information about individuals, including information about individuals’ identity,\ \ health, or demographic information, unless you have obtained the right to do so\ \ in accordance with applicable law\n 5. Engage in or facilitate any action or\ \ generate any content that infringes, misappropriates, or otherwise violates any\ \ third-party rights, including the outputs or results of any products or services\ \ using the Llama Materials\n 6. Create, generate, or facilitate the creation\ \ of malicious code, malware, computer viruses or do anything else that could disable,\ \ overburden, interfere with or impair the proper working, integrity, operation\ \ or appearance of a website or computer system\n 7. Engage in any action, or\ \ facilitate any action, to intentionally circumvent or remove usage restrictions\ \ or other safety measures, or to enable functionality disabled by Meta \n2. Engage\ \ in, promote, incite, facilitate, or assist in the planning or development of activities\ \ that present a risk of death or bodily harm to individuals, including use of Llama\ \ 3.2 related to the following:\n 8. Military, warfare, nuclear industries or\ \ applications, espionage, use for materials or activities that are subject to the\ \ International Traffic Arms Regulations (ITAR) maintained by the United States\ \ Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989\ \ or the Chemical Weapons Convention Implementation Act of 1997\n 9. Guns and\ \ illegal weapons (including weapon development)\n 10. Illegal drugs and regulated/controlled\ \ substances\n 11. Operation of critical infrastructure, transportation technologies,\ \ or heavy machinery\n 12. Self-harm or harm to others, including suicide, cutting,\ \ and eating disorders\n 13. Any content intended to incite or promote violence,\ \ abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive\ \ or mislead others, including use of Llama 3.2 related to the following:\n 14.\ \ Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n\ \ 15. Generating, promoting, or furthering defamatory content, including the\ \ creation of defamatory statements, images, or other content\n 16. Generating,\ \ promoting, or further distributing spam\n 17. Impersonating another individual\ \ without consent, authorization, or legal right\n 18. Representing that the\ \ use of Llama 3.2 or outputs are human-generated\n 19. Generating or facilitating\ \ false online engagement, including fake reviews and other means of fake online\ \ engagement \n4. Fail to appropriately disclose to end users any known dangers\ \ of your AI system 5. Interact with third party tools, models, or software designed\ \ to generate unlawful content or engage in unlawful or harmful conduct and/or represent\ \ that the outputs of such tools, models, or software are associated with Meta or\ \ Llama 3.2\n\nWith respect to any multimodal models included in Llama 3.2, the\ \ rights granted under Section 1(a) of the Llama 3.2 Community License Agreement\ \ are not being granted to you if you are an individual domiciled in, or a company\ \ with a principal place of business in, the European Union. This restriction does\ \ not apply to end users of a product or service that incorporates any such multimodal\ \ models.\n\nPlease report any violation of this Policy, software “bug,” or other\ \ problems that could lead to a violation of this Policy through one of the following\ \ means:\n\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\n\ * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\n\ * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\n\ * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama\ \ 3.2: LlamaUseReport@meta.com" extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text Job title: type: select options: - Student - Research Graduate - AI researcher - AI developer/engineer - Reporter - Other geo: ip_location ? By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy : checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit --- # anrgxone0/Llama-3.2-3B-Instruct-Q8_0-GGUF This model was converted to GGUF format from [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo anrgxone0/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo anrgxone0/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo anrgxone0/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo anrgxone0/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -c 2048 ```
John6666/mistbloom-sdxl-ill-v16-sdxl
John6666
"2025-04-03T15:50:50Z"
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "girls", "mistbloom", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
"2025-04-03T15:42:33Z"
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - girls - mistbloom - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1404485?modelVersionId=1615976). This model created by [Rustyvivid](https://civitai.com/user/Rustyvivid).