dataset_info:
features:
- name: id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: answer
dtype: string
- name: capability
sequence: string
- name: imagesource
dtype: string
splits:
- name: Assamese
num_bytes: 70756682
num_examples: 218
- name: Bengali
num_bytes: 70758785
num_examples: 218
- name: English
num_bytes: 70625304
num_examples: 218
- name: Gujarati
num_bytes: 70751428
num_examples: 218
- name: Hindi
num_bytes: 70753807
num_examples: 218
- name: Kannada
num_bytes: 70782185
num_examples: 218
- name: Malayalam
num_bytes: 70798447
num_examples: 218
- name: Marathi
num_bytes: 70761412
num_examples: 218
- name: Odia
num_bytes: 70770809
num_examples: 218
- name: Sanskrit
num_bytes: 70783403
num_examples: 218
- name: Tamil
num_bytes: 70810556
num_examples: 218
- name: Telugu
num_bytes: 70775865
num_examples: 218
download_size: 759913301
dataset_size: 849128683
configs:
- config_name: default
data_files:
- split: Assamese
path: data/Assamese-*
- split: Bengali
path: data/Bengali-*
- split: English
path: data/English-*
- split: Gujarati
path: data/Gujarati-*
- split: Hindi
path: data/Hindi-*
- split: Kannada
path: data/Kannada-*
- split: Malayalam
path: data/Malayalam-*
- split: Marathi
path: data/Marathi-*
- split: Odia
path: data/Odia-*
- split: Sanskrit
path: data/Sanskrit-*
- split: Tamil
path: data/Tamil-*
- split: Telugu
path: data/Telugu-*
license: other
license_name: krutrim-community-license-agreement-version-1.0
license_link: LICENSE.md
extra_gated_heading: Acknowledge license to accept the repository
extra_gated_button_content: Acknowledge license
language:
- as
- hi
- gu
- ml
- te
- ta
- kn
- or
- bn
- en
- mr
- sa
IndicMMVet: Indian Multilingual Translated Dataset For Evaluating Large Vision Language Models for Integrated Capabilities
- You can find the performance of Chitrarth on IndicMMVet here : Paper | Github | HuggingFace
- Evaluation Scripts of BharatBench is available here : Github
1. Introduction
IndicMMVet is a new dataset designed for evaluating Large Vision-Language Models (LVLMs) on Visual Question Answering (VQA) tasks and focuses on the integration of multiple core VL capabilities. These include recognition, OCR, knowledge, language generation, spatial awareness, and math.
This dataset is built upon MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities (GitHub).
2. Dataset Details
IndicMMVet consists of 218 samples spanning 12 Indic languages along with English. Each sample includes:
- Question: The question about the image.
- Capability: The type of sampling used (recognition, OCR, knowledge, language generation, spatial awareness, and math).
- Answer: The answer.
Supported Languages
- Assamese
- Bengali
- English
- Gujarati
- Hindi
- Kannada
- Malayalam
- Marathi
- Odia
- Sanskrit
- Tamil
- Telugu
3. How to Use and Run
You can load the dataset using the datasets
library:
from datasets import load_dataset
dataset = load_dataset("krutrim-ai-labs/IndicMMVet")
print(dataset)
4. License
This code repository and the model weights are licensed under the Krutrim Community License.
5. Citation
@article{khan2025chitrarth,
title={Chitrarth: Bridging Vision and Language for a Billion People},
author={Shaharukh Khan, Ayush Tarun, Abhinav Ravi, Ali Faraz, Akshat Patidar, Praveen Kumar Pokala, Anagha Bhangare, Raja Kolla, Chandra Khatri, Shubham Agarwal},
journal={arXiv preprint arXiv:2502.15392},
year={2025}
}
@misc{liu2023improvedllava,
title={Improved Baselines with Visual Instruction Tuning},
author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Lee, Yong Jae},
publisher={arXiv:2310.03744},
year={2023},
}
@article{yu2023mm,
title={Mm-vet: Evaluating large multimodal models for integrated capabilities},
author={Yu, Weihao and Yang, Zhengyuan and Li, Linjie and Wang, Jianfeng and Lin, Kevin and Liu, Zicheng and Wang, Xinchao and Wang, Lijuan},
journal={arXiv preprint arXiv:2308.02490},
year={2023}
}
@article{gala2023indictrans2,
title={Indictrans2: Towards high-quality and accessible machine translation models for all 22 scheduled indian languages},
author={Gala, Jay and Chitale, Pranjal A and AK, Raghavan and Gumma, Varun and Doddapaneni, Sumanth and Kumar, Aswanth and Nawale, Janki and Sujatha, Anupama and Puduppully, Ratish and Raghavan, Vivek and others},
journal={arXiv preprint arXiv:2305.16307},
year={2023}
}
6. Contact
Contributions are welcome! If you have any improvements or suggestions, feel free to submit a pull request on GitHub.
7. Acknowledgement
IndicMMVet is built with reference to the code of the following projects: MM-Vet, and LLaVA-1.5. Thanks for their awesome work!