Datasets:
License:
metadata
license: other
base_model: stabilityai/stable-diffusion-3.5-medium
tags:
- sd3
- sd3-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- standard
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: >-
Baky tuxedo cat, resting on top of a table, looking to the camera, paws
tucked
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
sd35-bucky_v7
This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3.5-medium.
The main validation prompt used during training was:
Baky tuxedo cat, resting on top of a table, looking to the camera, paws tucked
Validation settings
- CFG:
7.5
- CFG Rescale:
0.0
- Steps:
10
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
4201
- Resolution:
1024
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 5
Training steps: 640
Learning rate: 0.0002
- Learning rate schedule: polynomial
- Warmup steps: 64
Max grad norm: 2.0
Effective batch size: 2
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 1
Gradient checkpointing: True
Prediction type: flow-matching (extra parameters=['shift=3'])
Optimizer: adamw_bf16
Trainable parameter precision: Pure BF16
Caption dropout probability: 0.0%
LoRA Rank: 768
LoRA Alpha: 768.0
LoRA Dropout: 0.1
LoRA initialisation style: default
Datasets
bucky-annotated-2
- Repeats: 1
- Total number of images: 120
- Total number of aspect buckets: 2
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'stabilityai/stable-diffusion-3.5-medium'
adapter_id = 'jwnt4/sd35-bucky_v7'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "Baky tuxedo cat, resting on top of a table, looking to the camera, paws tucked"
negative_prompt = 'blurry, cropped, ugly'
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=10,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(4201),
width=1024,
height=1024,
guidance_scale=7.5,
).images[0]
image.save("output.png", format="PNG")