Dataset Viewer
Auto-converted to Parquet
id
stringlengths
15
31
source_file
stringclasses
2 values
construct_type
stringclasses
3 values
construct_name
stringlengths
10
26
original_code
stringlengths
31
145
corrupted_code
stringlengths
32
146
error_info
dict
repair_target
stringlengths
16
127
domain
stringclasses
2 values
language
stringclasses
1 value
imports
stringclasses
1 value
addition_identity_2571
manual_examples
theorem
addition_identity
theorem addition_identity (n : β„•) : n + 0 = n := by simp
theorem addition_identity (n : β„•) : n ++ 0 = n := by simp
{ "corrupted_token": " ++ ", "corruption_successful": true, "error_type": "operator_error", "original_token": " + " }
theorem addition_identity (n : β„•) : n + 0 = n := by simp
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
complex_re_add_8723
manual_examples
theorem
complex_re_add
theorem complex_re_add (z w : β„‚) : (z + w).re = z.re + w.re := by simp
theorem complex_re_add (z w : ℝ) : (z + w).re = z.re + w.re := by simp
{ "corrupted_token": "ℝ", "corruption_successful": true, "error_type": "type_error", "original_token": "β„‚" }
theorem complex_re_add (z w : β„‚) : (z + w).re = z.re + w.re := by simp
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
double_def_1590
manual_examples
def
double_def
def double (n : β„•) : β„• := n + n
def double (n : Natt) : β„• := n + n
{ "corrupted_token": "Natt", "corruption_successful": true, "error_type": "type_error", "original_token": "β„•" }
def double (n : β„•) : β„• := n + n
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
matrix_scalar_distributive_3902
manual_examples
theorem
matrix_scalar_distributive
theorem matrix_scalar_distributive (c : β„‚) (A B : Matrix (Fin 2) (Fin 2) β„‚) : c β€’ (A + B) = c β€’ A + c β€’ B := by simp [smul_add]
theorem matrix_scalar_distributive (c : β„‚) (A B : Matrix (Finn 2) (Fin 2) β„‚) : c β€’ (A + B) = c β€’ A + c β€’ B := by simp [smul_add]
{ "corrupted_token": "Finn", "corruption_successful": true, "error_type": "type_error", "original_token": "Fin" }
theorem matrix_scalar_distributive (c : β„‚) (A B : Matrix (Fin 2) (Fin 2) β„‚) : c β€’ (A + B) = c β€’ A + c β€’ B := by simp [smul_add]
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
subtraction_self_8199
manual_examples
theorem
subtraction_self
theorem subtraction_self (n : β„•) : n - n = 0 := by simp
theorem subtraction_self (n : β„•) : n - n = 0 := byy simp
{ "corrupted_token": "byy", "corruption_successful": true, "error_type": "syntax_error", "original_token": "by" }
theorem subtraction_self (n : β„•) : n - n = 0 := by simp
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
complex_zero_mul_8661
manual_examples
theorem
complex_zero_mul
theorem complex_zero_mul (z : β„‚) : 0 * z = 0 := by simp
theorem complex_zero_mul (z : β„‚) : 0 * z = 0 := by simpp
{ "corrupted_token": "simpp", "corruption_successful": true, "error_type": "syntax_error", "original_token": "simp" }
theorem complex_zero_mul (z : β„‚) : 0 * z = 0 := by simp
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
matrix_mul_one_2955
manual_examples
theorem
matrix_mul_one
theorem matrix_mul_one (A : Matrix (Fin 2) (Fin 2) β„‚) : A * 1 = A := by simp
theorem matrix_mul_one (A : Matrix (Fin 2) (Fin 2) β„‚) : A ** 1 = A := by simp
{ "corrupted_token": " ** ", "corruption_successful": true, "error_type": "operator_error", "original_token": " * " }
theorem matrix_mul_one (A : Matrix (Fin 2) (Fin 2) β„‚) : A * 1 = A := by simp
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
complex_im_add_7170
manual_examples
theorem
complex_im_add
theorem complex_im_add (z w : β„‚) : (z + w).im = z.im + w.im := by simp
theorem complex_im_add (z w : β„‚) : (z + w).im = z.im + w.im := byy simp
{ "corrupted_token": "byy", "corruption_successful": true, "error_type": "syntax_error", "original_token": "by" }
theorem complex_im_add (z w : β„‚) : (z + w).im = z.im + w.im := by simp
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
complex_add_conjugate_7145
manual_examples
theorem
complex_add_conjugate
theorem complex_add_conjugate (z w : β„‚) : star (z + w) = star z + star w := by rw [star_add]
theorem complex_add_conjugate (z w : β„‚) : star (z + w) == star z + star w := by rw [star_add]
{ "corrupted_token": " == ", "corruption_successful": true, "error_type": "operator_error", "original_token": " = " }
theorem complex_add_conjugate (z w : β„‚) : star (z + w) = star z + star w := by rw [star_add]
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
matrix_one_mul_2874
manual_examples
theorem
matrix_one_mul
theorem matrix_one_mul (A : Matrix (Fin 2) (Fin 2) β„‚) : 1 * A = A := by simp
theorem matrix_one_mul (A : Matrix (Fin 2) (Fin 2) β„‚) : 1 * A = A := byy simp
{ "corrupted_token": "byy", "corruption_successful": true, "error_type": "syntax_error", "original_token": "by" }
theorem matrix_one_mul (A : Matrix (Fin 2) (Fin 2) β„‚) : 1 * A = A := by simp
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
complex_one_mul_8672
manual_examples
theorem
complex_one_mul
theorem complex_one_mul (z : β„‚) : 1 * z = z := by simp
theorem complex_one_mul (z : β„‚) : 1 * z = z := byy simp
{ "corrupted_token": "byy", "corruption_successful": true, "error_type": "syntax_error", "original_token": "by" }
theorem complex_one_mul (z : β„‚) : 1 * z = z := by simp
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
addition_commutative_6128
manual_examples
theorem
addition_commutative
theorem addition_commutative (a b : β„•) : a + b = b + a := by rw [Nat.add_comm]
theorem addition_commutative (a b : Natt) : a + b = b + a := by rw [Nat.add_comm]
{ "corrupted_token": "Natt", "corruption_successful": true, "error_type": "type_error", "original_token": "β„•" }
theorem addition_commutative (a b : β„•) : a + b = b + a := by rw [Nat.add_comm]
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
multiplication_commutative_6319
manual_examples
theorem
multiplication_commutative
theorem multiplication_commutative (a b : β„•) : a * b = b * a := by rw [Nat.mul_comm]
theorem multiplication_commutative (a b : β„•) : a * b == b * a := by rw [Nat.mul_comm]
{ "corrupted_token": " == ", "corruption_successful": true, "error_type": "operator_error", "original_token": " = " }
theorem multiplication_commutative (a b : β„•) : a * b = b * a := by rw [Nat.mul_comm]
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
distributive_law_4132
manual_examples
theorem
distributive_law
theorem distributive_law (a b c : β„•) : a * (b + c) = a * b + a * c := by rw [Nat.mul_add]
theorem distributive_law (a b c : β„•) : a * (b ++ c) = a * b + a * c := by rw [Nat.mul_add]
{ "corrupted_token": " ++ ", "corruption_successful": true, "error_type": "operator_error", "original_token": " + " }
theorem distributive_law (a b c : β„•) : a * (b + c) = a * b + a * c := by rw [Nat.mul_add]
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
matrix_neg_neg_9564
manual_examples
theorem
matrix_neg_neg
theorem matrix_neg_neg (A : Matrix (Fin 2) (Fin 2) β„‚) : -(-A) = A := by simp
theorem matrix_neg_neg (A : Matrix (Finn 2) (Fin 2) β„‚) : -(-A) = A := by simp
{ "corrupted_token": "Finn", "corruption_successful": true, "error_type": "type_error", "original_token": "Fin" }
theorem matrix_neg_neg (A : Matrix (Fin 2) (Fin 2) β„‚) : -(-A) = A := by simp
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
square_def_7948
manual_examples
def
square_def
def square (n : β„•) : β„• := n * n
deff square (n : β„•) : β„• := n * n
{ "corrupted_token": "deff", "corruption_successful": true, "error_type": "syntax_error", "original_token": "def" }
def square (n : β„•) : β„• := n * n
quantum_information_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
matrix_trace_linear_9001
enhanced_povm_theory
lemma
matrix_trace_linear
lemma matrix_trace_linear (A B : Matrix (Fin 2) (Fin 2) β„‚) : Matrix.trace (A + B) = Matrix.trace A + Matrix.trace B := by simp [Matrix.trace_add]
lemma matrix_trace_linear (A B : Matrix (Fin 2) (Fin 2) β„‚) : Matrix.trace (A + B) = Matrix.trace A + Matrix.trace B := by simp [Matrix.trace_addd]
{ "corrupted_token": "Matrix.trace_addd", "corruption_successful": true, "error_type": "name_error", "original_token": "Matrix.trace_add" }
Matrix.trace_add
matrix_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
matrix_trace_zero_9002
enhanced_povm_theory
lemma
matrix_trace_zero
lemma matrix_trace_zero : Matrix.trace (0 : Matrix (Fin 2) (Fin 2) β„‚) = 0 := by simp [Matrix.trace_zero]
lemma matrix_trace_zero : Matrix.trace (0 : Matrix (Fin 2) (Fin 2) β„‚) = 0 := by simp [Matrix.trace_zeero]
{ "corrupted_token": "Matrix.trace_zeero", "corruption_successful": true, "error_type": "name_error", "original_token": "Matrix.trace_zero" }
Matrix.trace_zero
matrix_theory
lean4
import Mathlib.Data.Nat.Basic import Mathlib.Data.Complex.Basic import Mathlib.Algebra.Star.Basic import Mathlib.Data.Matrix.Basic import Mathlib.LinearAlgebra.Matrix.Trace import Mathlib.Algebra.Module.Basic import Mathlib.Data.Finset.Basic import Mathlib.Algebra.BigOperators.Basic
README.md exists but content is empty.
Downloads last month
46