Dataset Viewer
Auto-converted to Parquet
tactic
stringlengths
1
5.59k
name
stringlengths
1
85
haveDraft
stringlengths
1
44.5k
goal
stringlengths
7
64.3k
dsimp [dNext]
dsimp
C.d i ((ComplexShape.down ℕ).next i) ≫ f ((ComplexShape.down ℕ).next i) i = C.d i (i - 1) ≫ f (i - 1) i
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : ChainComplex V ℕ i : ℕ f : (i j : ℕ) → C.X i ⟶ D.X j ⊢ (dNext i : ((i j : ℕ) → C.X i ⟶ D.X j) → (C.X i ⟶ D.X i)) f = C.d i (i - 1) ≫ f (i - 1) i
cases i
zero
C.d 0 ((ComplexShape.down ℕ).next 0) ≫ f ((ComplexShape.down ℕ).next 0) 0 = C.d 0 (0 - 1) ≫ f (0 - 1) 0
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : ChainComplex V ℕ i : ℕ f : (i j : ℕ) → C.X i ⟶ D.X j ⊢ C.d i ((ComplexShape.down ℕ).next i) ≫ f ((ComplexShape.down ℕ).next i) i = C.d i (i - 1) ≫ f (i - 1) i
cases i
succ
C.d (n✝ + 1) ((ComplexShape.down ℕ).next (n✝ + 1)) ≫ f ((ComplexShape.down ℕ).next (n✝ + 1)) (n✝ + 1) = C.d (n✝ + 1) (n✝ + 1 - 1) ≫ f (n✝ + 1 - 1) (n✝ + 1)
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : ChainComplex V ℕ i : ℕ f : (i j : ℕ) → C.X i ⟶ D.X j zero : C.d 0 ((ComplexShape.down ℕ).next 0) ≫ f ((ComplexShape.down ℕ).next 0) 0 = C.d 0 (0 - 1) ≫ f (0 - 1) 0 ⊢ C.d i ((ComplexShape.down ℕ).next i) ≫ f ((ComplexShape.down ℕ).next i) i = C.d i (i - 1) ≫ f (i - 1) i
congr
succ
(ComplexShape.down ℕ).next (n✝ + 1) = n✝ + 1 - 1
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : ChainComplex V ℕ f : (i j : ℕ) → C.X i ⟶ D.X j n✝ : ℕ ⊢ C.d (n✝ + 1) ((ComplexShape.down ℕ).next (n✝ + 1)) ≫ f ((ComplexShape.down ℕ).next (n✝ + 1)) (n✝ + 1) = C.d (n✝ + 1) (n✝ + 1 - 1) ≫ f (n✝ + 1 - 1) (n✝ + 1)
congr
succ
(ComplexShape.down ℕ).next (n✝ + 1) = n✝ + 1 - 1
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : ChainComplex V ℕ f : (i j : ℕ) → C.X i ⟶ D.X j n✝ : ℕ succ : (ComplexShape.down ℕ).next (n✝ + 1) = n✝ + 1 - 1 ⊢ C.d (n✝ + 1) ((ComplexShape.down ℕ).next (n✝ + 1)) ≫ f ((ComplexShape.down ℕ).next (n✝ + 1)) (n✝ + 1) = C.d (n✝ + 1) (n✝ + 1 - 1) ≫ f (n✝ + 1 - 1) (n✝ + 1)
congr
succ
(ComplexShape.down ℕ).next (n✝ + 1) = n✝ + 1 - 1
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : ChainComplex V ℕ f : (i j : ℕ) → C.X i ⟶ D.X j n✝ : ℕ succ : (ComplexShape.down ℕ).next (n✝ + 1) = n✝ + 1 - 1 succ₁ : (ComplexShape.down ℕ).next (n✝ + 1) = n✝ + 1 - 1 ⊢ C.d (n✝ + 1) ((ComplexShape.down ℕ).next (n✝ + 1)) ≫ f ((ComplexShape.down ℕ).next (n✝ + 1)) (n✝ + 1) = C.d (n✝ + 1) (n✝ + 1 - 1) ≫ f (n✝ + 1 - 1) (n✝ + 1)
dsimp [prevD]
dsimp
f i ((ComplexShape.up ℕ).prev i) ≫ D.d ((ComplexShape.up ℕ).prev i) i = f i (i - 1) ≫ D.d (i - 1) i
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : CochainComplex V ℕ i : ℕ f : (i j : ℕ) → C.X i ⟶ D.X j ⊢ (prevD i : ((i j : ℕ) → C.X i ⟶ D.X j) → (C.X i ⟶ D.X i)) f = f i (i - 1) ≫ D.d (i - 1) i
cases i
zero
f 0 ((ComplexShape.up ℕ).prev 0) ≫ D.d ((ComplexShape.up ℕ).prev 0) 0 = f 0 (0 - 1) ≫ D.d (0 - 1) 0
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : CochainComplex V ℕ i : ℕ f : (i j : ℕ) → C.X i ⟶ D.X j ⊢ f i ((ComplexShape.up ℕ).prev i) ≫ D.d ((ComplexShape.up ℕ).prev i) i = f i (i - 1) ≫ D.d (i - 1) i
cases i
succ
f (n✝ + 1) ((ComplexShape.up ℕ).prev (n✝ + 1)) ≫ D.d ((ComplexShape.up ℕ).prev (n✝ + 1)) (n✝ + 1) = f (n✝ + 1) (n✝ + 1 - 1) ≫ D.d (n✝ + 1 - 1) (n✝ + 1)
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : CochainComplex V ℕ i : ℕ f : (i j : ℕ) → C.X i ⟶ D.X j zero : f 0 ((ComplexShape.up ℕ).prev 0) ≫ D.d ((ComplexShape.up ℕ).prev 0) 0 = f 0 (0 - 1) ≫ D.d (0 - 1) 0 ⊢ f i ((ComplexShape.up ℕ).prev i) ≫ D.d ((ComplexShape.up ℕ).prev i) i = f i (i - 1) ≫ D.d (i - 1) i
congr
succ
(ComplexShape.up ℕ).prev (n✝ + 1) = n✝ + 1 - 1
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : CochainComplex V ℕ f : (i j : ℕ) → C.X i ⟶ D.X j n✝ : ℕ ⊢ f (n✝ + 1) ((ComplexShape.up ℕ).prev (n✝ + 1)) ≫ D.d ((ComplexShape.up ℕ).prev (n✝ + 1)) (n✝ + 1) = f (n✝ + 1) (n✝ + 1 - 1) ≫ D.d (n✝ + 1 - 1) (n✝ + 1)
congr
succ
(ComplexShape.up ℕ).prev (n✝ + 1) = n✝ + 1 - 1
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : CochainComplex V ℕ f : (i j : ℕ) → C.X i ⟶ D.X j n✝ : ℕ succ : (ComplexShape.up ℕ).prev (n✝ + 1) = n✝ + 1 - 1 ⊢ f (n✝ + 1) ((ComplexShape.up ℕ).prev (n✝ + 1)) ≫ D.d ((ComplexShape.up ℕ).prev (n✝ + 1)) (n✝ + 1) = f (n✝ + 1) (n✝ + 1 - 1) ≫ D.d (n✝ + 1 - 1) (n✝ + 1)
congr
succ
(ComplexShape.up ℕ).prev (n✝ + 1) = n✝ + 1 - 1
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V C D : CochainComplex V ℕ f : (i j : ℕ) → C.X i ⟶ D.X j n✝ : ℕ succ : (ComplexShape.up ℕ).prev (n✝ + 1) = n✝ + 1 - 1 succ₁ : (ComplexShape.up ℕ).prev (n✝ + 1) = n✝ + 1 - 1 ⊢ f (n✝ + 1) ((ComplexShape.up ℕ).prev (n✝ + 1)) ≫ D.d ((ComplexShape.up ℕ).prev (n✝ + 1)) (n✝ + 1) = f (n✝ + 1) (n✝ + 1 - 1) ≫ D.d (n✝ + 1 - 1) (n✝ + 1)
ext n
h
(nullHomotopicMap hom ≫ g).f n = (nullHomotopicMap fun i j ↦ hom i j ≫ g.f j).f n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → C.X i ⟶ D.X j g : D ⟶ E ⊢ nullHomotopicMap hom ≫ g = nullHomotopicMap fun i j ↦ hom i j ≫ g.f j
dsimp [nullHomotopicMap, fromNext, toPrev, AddMonoidHom.mk'_apply]
h
(C.dFrom n ≫ hom (c.next n) n + hom n (c.prev n) ≫ D.dTo n) ≫ g.f n = C.dFrom n ≫ hom (c.next n) n ≫ g.f n + (hom n (c.prev n) ≫ g.f (c.prev n)) ≫ E.dTo n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → C.X i ⟶ D.X j g : D ⟶ E n : ι ⊢ (nullHomotopicMap hom ≫ g).f n = (nullHomotopicMap fun i j ↦ hom i j ≫ g.f j).f n
ext n
h
(nullHomotopicMap' hom ≫ g).f n = (nullHomotopicMap' fun i j hij ↦ hom i j sorry ≫ g.f j).f n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) g : D ⟶ E ⊢ nullHomotopicMap' hom ≫ g = nullHomotopicMap' fun i j hij ↦ hom i j hij ≫ g.f j
rw [nullHomotopicMap', nullHomotopicMap_comp]
h
(nullHomotopicMap fun i j ↦ (dite (c.Rel j i) (hom i j) fun x ↦ 0) ≫ g.f j).f n = (nullHomotopicMap' fun i j hij ↦ hom i j sorry ≫ g.f j).f n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) g : D ⟶ E n : ι ⊢ (nullHomotopicMap' hom ≫ g).f n = (nullHomotopicMap' fun i j hij ↦ hom i j hij ≫ g.f j).f n
nullHomotopicMap',
h
((nullHomotopicMap fun i j ↦ dite (c.Rel j i) (hom i j) fun x ↦ 0) ≫ g).f n = (nullHomotopicMap' fun i j hij ↦ hom i j sorry ≫ g.f j).f n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) g : D ⟶ E n : ι ⊢ (nullHomotopicMap' hom ≫ g).f n = (nullHomotopicMap' fun i j hij ↦ hom i j hij ≫ g.f j).f n
nullHomotopicMap_comp
h
(nullHomotopicMap fun i j ↦ (dite (c.Rel j i) (hom i j) fun x ↦ 0) ≫ g.f j).f n = (nullHomotopicMap' fun i j hij ↦ hom i j sorry ≫ g.f j).f n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) g : D ⟶ E n : ι ⊢ ((nullHomotopicMap fun i j ↦ dite (c.Rel j i) (hom i j) fun x ↦ 0) ≫ g).f n = (nullHomotopicMap' fun i j hij ↦ hom i j hij ≫ g.f j).f n
congr
h
(fun i j ↦ (dite (c.Rel j i) (hom i j) fun x ↦ 0) ≫ g.f j) = fun i j ↦ dite (c.Rel j i) ((fun i j hij ↦ hom i j sorry ≫ g.f j) i j) fun x ↦ 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) g : D ⟶ E n : ι ⊢ (nullHomotopicMap fun i j ↦ (dite (c.Rel j i) (hom i j) fun x ↦ 0) ≫ g.f j).f n = (nullHomotopicMap' fun i j hij ↦ hom i j hij ≫ g.f j).f n
ext i j
h
(dite (c.Rel j i) (hom i j) fun x ↦ 0) ≫ g.f j = dite (c.Rel j i) ((fun i j hij ↦ hom i j sorry ≫ g.f j) i j) fun x ↦ 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) g : D ⟶ E n : ι ⊢ (fun i j ↦ (dite (c.Rel j i) (hom i j) fun x ↦ 0) ≫ g.f j) = fun i j ↦ dite (c.Rel j i) ((fun i j hij ↦ hom i j hij ≫ g.f j) i j) fun x ↦ 0
split_ifs
pos
hom i j sorry ≫ g.f j = (fun i j hij ↦ hom i j sorry ≫ g.f j) i j sorry
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) g : D ⟶ E n i j : ι ⊢ (dite (c.Rel j i) (hom i j) fun x ↦ 0) ≫ g.f j = dite (c.Rel j i) ((fun i j hij ↦ hom i j hij ≫ g.f j) i j) fun x ↦ 0
split_ifs
neg
0 ≫ g.f j = 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) g : D ⟶ E n i j : ι pos : hom i j _fvar.102933 ≫ g.f j = (fun i j hij ↦ hom i j hij ≫ g.f j) i j _fvar.102933 ⊢ (dite (c.Rel j i) (hom i j) fun x ↦ 0) ≫ g.f j = dite (c.Rel j i) ((fun i j hij ↦ hom i j hij ≫ g.f j) i j) fun x ↦ 0
zero_comp
neg
0 = 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) g : D ⟶ E n i j : ι h✝ : ¬c.Rel j i ⊢ 0 ≫ g.f j = 0
ext n
h
(f ≫ nullHomotopicMap hom).f n = (nullHomotopicMap fun i j ↦ f.f i ≫ hom i j).f n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → D.X i ⟶ E.X j ⊢ f ≫ nullHomotopicMap hom = nullHomotopicMap fun i j ↦ f.f i ≫ hom i j
dsimp [nullHomotopicMap, fromNext, toPrev, AddMonoidHom.mk'_apply]
h
f.f n ≫ (D.dFrom n ≫ hom (c.next n) n + hom n (c.prev n) ≫ E.dTo n) = C.dFrom n ≫ f.f (c.next n) ≫ hom (c.next n) n + (f.f n ≫ hom n (c.prev n)) ≫ E.dTo n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → D.X i ⟶ E.X j n : ι ⊢ (f ≫ nullHomotopicMap hom).f n = (nullHomotopicMap fun i j ↦ f.f i ≫ hom i j).f n
ext n
h
(f ≫ nullHomotopicMap' hom).f n = (nullHomotopicMap' fun i j hij ↦ f.f i ≫ hom i j sorry).f n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → c.Rel j i → (D.X i ⟶ E.X j) ⊢ f ≫ nullHomotopicMap' hom = nullHomotopicMap' fun i j hij ↦ f.f i ≫ hom i j hij
rw [nullHomotopicMap', comp_nullHomotopicMap]
h
(nullHomotopicMap fun i j ↦ f.f i ≫ dite (c.Rel j i) (hom i j) fun x ↦ 0).f n = (nullHomotopicMap' fun i j hij ↦ f.f i ≫ hom i j sorry).f n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → c.Rel j i → (D.X i ⟶ E.X j) n : ι ⊢ (f ≫ nullHomotopicMap' hom).f n = (nullHomotopicMap' fun i j hij ↦ f.f i ≫ hom i j hij).f n
nullHomotopicMap',
h
(f ≫ nullHomotopicMap fun i j ↦ dite (c.Rel j i) (hom i j) fun x ↦ 0).f n = (nullHomotopicMap' fun i j hij ↦ f.f i ≫ hom i j sorry).f n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → c.Rel j i → (D.X i ⟶ E.X j) n : ι ⊢ (f ≫ nullHomotopicMap' hom).f n = (nullHomotopicMap' fun i j hij ↦ f.f i ≫ hom i j hij).f n
comp_nullHomotopicMap
h
(nullHomotopicMap fun i j ↦ f.f i ≫ dite (c.Rel j i) (hom i j) fun x ↦ 0).f n = (nullHomotopicMap' fun i j hij ↦ f.f i ≫ hom i j sorry).f n
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → c.Rel j i → (D.X i ⟶ E.X j) n : ι ⊢ (f ≫ nullHomotopicMap fun i j ↦ dite (c.Rel j i) (hom i j) fun x ↦ 0).f n = (nullHomotopicMap' fun i j hij ↦ f.f i ≫ hom i j hij).f n
congr
h
(fun i j ↦ f.f i ≫ dite (c.Rel j i) (hom i j) fun x ↦ 0) = fun i j ↦ dite (c.Rel j i) ((fun i j hij ↦ f.f i ≫ hom i j sorry) i j) fun x ↦ 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → c.Rel j i → (D.X i ⟶ E.X j) n : ι ⊢ (nullHomotopicMap fun i j ↦ f.f i ≫ dite (c.Rel j i) (hom i j) fun x ↦ 0).f n = (nullHomotopicMap' fun i j hij ↦ f.f i ≫ hom i j hij).f n
ext i j
h
(f.f i ≫ dite (c.Rel j i) (hom i j) fun x ↦ 0) = dite (c.Rel j i) ((fun i j hij ↦ f.f i ≫ hom i j sorry) i j) fun x ↦ 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → c.Rel j i → (D.X i ⟶ E.X j) n : ι ⊢ (fun i j ↦ f.f i ≫ dite (c.Rel j i) (hom i j) fun x ↦ 0) = fun i j ↦ dite (c.Rel j i) ((fun i j hij ↦ f.f i ≫ hom i j hij) i j) fun x ↦ 0
split_ifs
pos
f.f i ≫ hom i j sorry = (fun i j hij ↦ f.f i ≫ hom i j sorry) i j sorry
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → c.Rel j i → (D.X i ⟶ E.X j) n i j : ι ⊢ (f.f i ≫ dite (c.Rel j i) (hom i j) fun x ↦ 0) = dite (c.Rel j i) ((fun i j hij ↦ f.f i ≫ hom i j hij) i j) fun x ↦ 0
split_ifs
neg
f.f i ≫ 0 = 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → c.Rel j i → (D.X i ⟶ E.X j) n i j : ι pos : f.f i ≫ hom i j _fvar.109603 = (fun i j hij ↦ f.f i ≫ hom i j hij) i j _fvar.109603 ⊢ (f.f i ≫ dite (c.Rel j i) (hom i j) fun x ↦ 0) = dite (c.Rel j i) ((fun i j hij ↦ f.f i ≫ hom i j hij) i j) fun x ↦ 0
comp_zero
neg
0 = 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f : C ⟶ D hom : (i j : ι) → c.Rel j i → (D.X i ⟶ E.X j) n i j : ι h✝ : ¬c.Rel j i ⊢ f.f i ≫ 0 = 0
ext i
h
((G.mapHomologicalComplex c).map (nullHomotopicMap hom)).f i = (nullHomotopicMap fun i j ↦ G.map (hom i j)).f i
ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : G.Additive hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (G.mapHomologicalComplex c).map (nullHomotopicMap hom) = nullHomotopicMap fun i j ↦ G.map (hom i j)
dsimp [nullHomotopicMap, dNext, prevD]
h
G.map (C.d i (c.next i) ≫ hom (c.next i) i + hom i (c.prev i) ≫ D.d (c.prev i) i) = G.map (C.d i (c.next i)) ≫ G.map (hom (c.next i) i) + G.map (hom i (c.prev i)) ≫ G.map (D.d (c.prev i) i)
ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : G.Additive hom : (i j : ι) → C.X i ⟶ D.X j i : ι ⊢ ((G.mapHomologicalComplex c).map (nullHomotopicMap hom)).f i = (nullHomotopicMap fun i j ↦ G.map (hom i j)).f i
ext n
h
((G.mapHomologicalComplex c).map (nullHomotopicMap' hom)).f n = (nullHomotopicMap' fun i j hij ↦ G.map (hom i j sorry)).f n
ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : G.Additive hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (G.mapHomologicalComplex c).map (nullHomotopicMap' hom) = nullHomotopicMap' fun i j hij ↦ G.map (hom i j hij)
rw [nullHomotopicMap', map_nullHomotopicMap]
h
(nullHomotopicMap fun i j ↦ G.map (dite (c.Rel j i) (hom i j) fun x ↦ 0)).f n = (nullHomotopicMap' fun i j hij ↦ G.map (hom i j sorry)).f n
ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : G.Additive hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) n : ι ⊢ ((G.mapHomologicalComplex c).map (nullHomotopicMap' hom)).f n = (nullHomotopicMap' fun i j hij ↦ G.map (hom i j hij)).f n
nullHomotopicMap',
h
((G.mapHomologicalComplex c).map (nullHomotopicMap fun i j ↦ dite (c.Rel j i) (hom i j) fun x ↦ 0)).f n = (nullHomotopicMap' fun i j hij ↦ G.map (hom i j sorry)).f n
ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : G.Additive hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) n : ι ⊢ ((G.mapHomologicalComplex c).map (nullHomotopicMap' hom)).f n = (nullHomotopicMap' fun i j hij ↦ G.map (hom i j hij)).f n
map_nullHomotopicMap
h
(nullHomotopicMap fun i j ↦ G.map (dite (c.Rel j i) (hom i j) fun x ↦ 0)).f n = (nullHomotopicMap' fun i j hij ↦ G.map (hom i j sorry)).f n
ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : G.Additive hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) n : ι ⊢ ((G.mapHomologicalComplex c).map (nullHomotopicMap fun i j ↦ dite (c.Rel j i) (hom i j) fun x ↦ 0)).f n = (nullHomotopicMap' fun i j hij ↦ G.map (hom i j hij)).f n
congr
h
(fun i j ↦ G.map (dite (c.Rel j i) (hom i j) fun x ↦ 0)) = fun i j ↦ dite (c.Rel j i) ((fun i j hij ↦ G.map (hom i j sorry)) i j) fun x ↦ 0
ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : G.Additive hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) n : ι ⊢ (nullHomotopicMap fun i j ↦ G.map (dite (c.Rel j i) (hom i j) fun x ↦ 0)).f n = (nullHomotopicMap' fun i j hij ↦ G.map (hom i j hij)).f n
ext i j
h
G.map (dite (c.Rel j i) (hom i j) fun x ↦ 0) = dite (c.Rel j i) ((fun i j hij ↦ G.map (hom i j sorry)) i j) fun x ↦ 0
ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : G.Additive hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) n : ι ⊢ (fun i j ↦ G.map (dite (c.Rel j i) (hom i j) fun x ↦ 0)) = fun i j ↦ dite (c.Rel j i) ((fun i j hij ↦ G.map (hom i j hij)) i j) fun x ↦ 0
split_ifs
pos
G.map (hom i j sorry) = (fun i j hij ↦ G.map (hom i j sorry)) i j sorry
ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : G.Additive hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) n i j : ι ⊢ G.map (dite (c.Rel j i) (hom i j) fun x ↦ 0) = dite (c.Rel j i) ((fun i j hij ↦ G.map (hom i j hij)) i j) fun x ↦ 0
split_ifs
neg
G.map 0 = 0
ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : G.Additive hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) n i j : ι pos : G.map (hom i j _fvar.118355) = (fun i j hij ↦ G.map (hom i j hij)) i j _fvar.118355 ⊢ G.map (dite (c.Rel j i) (hom i j) fun x ↦ 0) = dite (c.Rel j i) ((fun i j hij ↦ G.map (hom i j hij)) i j) fun x ↦ 0
G.map_zero
neg
0 = 0
ι : Type u_1 V : Type u inst✝⁴ : Category.{v, u} V inst✝³ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c W : Type u_2 inst✝² : Category.{u_3, u_2} W inst✝¹ : Preadditive W G : V ⥤ W inst✝ : G.Additive hom : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) n i j : ι h✝ : ¬c.Rel j i ⊢ G.map 0 = 0
apply nullHomotopy fun i j => dite (c.Rel j i) (h i j) fun _ => 0
apply
∀ (i j : ι), ¬c.Rel j i → (dite (c.Rel j i) (h i j) fun x ↦ 0) = 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h✝ k : D ⟶ E i : ι h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ Homotopy (nullHomotopicMap' h) 0
dsimp only [nullHomotopicMap]
dsimp
(dNext k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom + (prevD k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom = C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ D.d k₂ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₂ k₁ k₀ : ι r₂₁ : c.Rel k₂ k₁ r₁₀ : c.Rel k₁ k₀ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (nullHomotopicMap hom).f k₁ = C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ D.d k₂ k₁
dNext_eq hom r₁₀,
dNext_eq
C.d k₁ k₀ ≫ hom k₀ k₁ + (prevD k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom = C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ D.d k₂ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₂ k₁ k₀ : ι r₂₁ : c.Rel k₂ k₁ r₁₀ : c.Rel k₁ k₀ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (dNext k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom + (prevD k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom = C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ D.d k₂ k₁
prevD_eq hom r₂₁
prevD_eq
C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ D.d k₂ k₁ = C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ D.d k₂ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₂ k₁ k₀ : ι r₂₁ : c.Rel k₂ k₁ r₁₀ : c.Rel k₁ k₀ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ C.d k₁ k₀ ≫ hom k₀ k₁ + (prevD k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom = C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ D.d k₂ k₁
simp only [nullHomotopicMap']
simp
(nullHomotopicMap fun i j ↦ dite (c.Rel j i) (h i j) fun x ↦ 0).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ sorry + h k₁ k₂ sorry ≫ D.d k₂ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₂ k₁ k₀ : ι r₂₁ : c.Rel k₂ k₁ r₁₀ : c.Rel k₁ k₀ h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (nullHomotopicMap' h).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ D.d k₂ k₁
rw [nullHomotopicMap_f r₂₁ r₁₀]
rw
(C.d k₁ k₀ ≫ dite (c.Rel k₁ k₀) (h k₀ k₁) fun x ↦ 0) + (dite (c.Rel k₂ k₁) (h k₁ k₂) fun x ↦ 0) ≫ D.d k₂ k₁ = C.d k₁ k₀ ≫ h k₀ k₁ sorry + h k₁ k₂ sorry ≫ D.d k₂ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₂ k₁ k₀ : ι r₂₁ : c.Rel k₂ k₁ r₁₀ : c.Rel k₁ k₀ h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (nullHomotopicMap fun i j ↦ dite (c.Rel j i) (h i j) fun x ↦ 0).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ D.d k₂ k₁
nullHomotopicMap_f r₂₁ r₁₀
nullHomotopicMap_f
(C.d k₁ k₀ ≫ dite (c.Rel k₁ k₀) (h k₀ k₁) fun x ↦ 0) + (dite (c.Rel k₂ k₁) (h k₁ k₂) fun x ↦ 0) ≫ D.d k₂ k₁ = C.d k₁ k₀ ≫ h k₀ k₁ sorry + h k₁ k₂ sorry ≫ D.d k₂ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₂ k₁ k₀ : ι r₂₁ : c.Rel k₂ k₁ r₁₀ : c.Rel k₁ k₀ h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (nullHomotopicMap fun i j ↦ dite (c.Rel j i) (h i j) fun x ↦ 0).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ D.d k₂ k₁
split_ifs
split_ifs
C.d k₁ k₀ ≫ h k₀ k₁ sorry + h k₁ k₂ sorry ≫ D.d k₂ k₁ = C.d k₁ k₀ ≫ h k₀ k₁ sorry + h k₁ k₂ sorry ≫ D.d k₂ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₂ k₁ k₀ : ι r₂₁ : c.Rel k₂ k₁ r₁₀ : c.Rel k₁ k₀ h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (C.d k₁ k₀ ≫ dite (c.Rel k₁ k₀) (h k₀ k₁) fun x ↦ 0) + (dite (c.Rel k₂ k₁) (h k₁ k₂) fun x ↦ 0) ≫ D.d k₂ k₁ = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ D.d k₂ k₁
dsimp only [nullHomotopicMap]
dsimp
(dNext k₀ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₀ ⟶ D.X k₀)) hom + (prevD k₀ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₀ ⟶ D.X k₀)) hom = hom k₀ k₁ ≫ D.d k₁ k₀
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (nullHomotopicMap hom).f k₀ = hom k₀ k₁ ≫ D.d k₁ k₀
rw [prevD_eq hom r₁₀, dNext, AddMonoidHom.mk'_apply, C.shape, zero_comp, zero_add]
a
¬c.Rel k₀ (c.next k₀)
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (dNext k₀ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₀ ⟶ D.X k₀)) hom + (prevD k₀ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₀ ⟶ D.X k₀)) hom = hom k₀ k₁ ≫ D.d k₁ k₀
prevD_eq hom r₁₀,
prevD_eq
(dNext k₀ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₀ ⟶ D.X k₀)) hom + hom k₀ k₁ ≫ D.d k₁ k₀ = hom k₀ k₁ ≫ D.d k₁ k₀
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (dNext k₀ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₀ ⟶ D.X k₀)) hom + (prevD k₀ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₀ ⟶ D.X k₀)) hom = hom k₀ k₁ ≫ D.d k₁ k₀
dNext,
this
(AddMonoidHom.mk' (fun f ↦ C.d k₀ (c.next k₀) ≫ f (c.next k₀) k₀) sorry : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₀ ⟶ D.X k₀)) hom + hom k₀ k₁ ≫ D.d k₁ k₀ = hom k₀ k₁ ≫ D.d k₁ k₀
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (dNext k₀ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₀ ⟶ D.X k₀)) hom + hom k₀ k₁ ≫ D.d k₁ k₀ = hom k₀ k₁ ≫ D.d k₁ k₀
AddMonoidHom.mk'_apply,
this
C.d k₀ (c.next k₀) ≫ hom (c.next k₀) k₀ + hom k₀ k₁ ≫ D.d k₁ k₀ = hom k₀ k₁ ≫ D.d k₁ k₀
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (AddMonoidHom.mk' (fun f ↦ C.d k₀ (c.next k₀) ≫ f (c.next k₀) k₀) ⋯ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₀ ⟶ D.X k₀)) hom + hom k₀ k₁ ≫ D.d k₁ k₀ = hom k₀ k₁ ≫ D.d k₁ k₀
C.shape,
this
0 ≫ hom (c.next k₀) k₀ + hom k₀ k₁ ≫ D.d k₁ k₀ = hom k₀ k₁ ≫ D.d k₁ k₀
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hom : (i j : ι) → C.X i ⟶ D.X j ⊢ C.d k₀ (c.next k₀) ≫ hom (c.next k₀) k₀ + hom k₀ k₁ ≫ D.d k₁ k₀ = hom k₀ k₁ ≫ D.d k₁ k₀
C.shape,
a
¬c.Rel k₀ (c.next k₀)
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hom : (i j : ι) → C.X i ⟶ D.X j this : 0 ≫ hom (c.next k₀) k₀ + hom k₀ k₁ ≫ D.d k₁ k₀ = hom k₀ k₁ ≫ D.d k₁ k₀ ⊢ C.d k₀ (c.next k₀) ≫ hom (c.next k₀) k₀ + hom k₀ k₁ ≫ D.d k₁ k₀ = hom k₀ k₁ ≫ D.d k₁ k₀
simp only [nullHomotopicMap']
simp
(nullHomotopicMap fun i j ↦ dite (c.Rel j i) (h i j) fun x ↦ 0).f k₀ = h k₀ k₁ sorry ≫ D.d k₁ k₀
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₀ : ∀ (l : ι), ¬c.Rel k₀ l h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (nullHomotopicMap' h).f k₀ = h k₀ k₁ r₁₀ ≫ D.d k₁ k₀
rw [nullHomotopicMap_f_of_not_rel_left r₁₀ hk₀]
rw
(dite (c.Rel k₁ k₀) (h k₀ k₁) fun x ↦ 0) ≫ D.d k₁ k₀ = h k₀ k₁ sorry ≫ D.d k₁ k₀
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₀ : ∀ (l : ι), ¬c.Rel k₀ l h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (nullHomotopicMap fun i j ↦ dite (c.Rel j i) (h i j) fun x ↦ 0).f k₀ = h k₀ k₁ r₁₀ ≫ D.d k₁ k₀
nullHomotopicMap_f_of_not_rel_left r₁₀ hk₀
nullHomotopicMap_f_of_not_rel_left
(dite (c.Rel k₁ k₀) (h k₀ k₁) fun x ↦ 0) ≫ D.d k₁ k₀ = h k₀ k₁ sorry ≫ D.d k₁ k₀
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₀ : ∀ (l : ι), ¬c.Rel k₀ l h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (nullHomotopicMap fun i j ↦ dite (c.Rel j i) (h i j) fun x ↦ 0).f k₀ = h k₀ k₁ r₁₀ ≫ D.d k₁ k₀
split_ifs
split_ifs
h k₀ k₁ sorry ≫ D.d k₁ k₀ = h k₀ k₁ sorry ≫ D.d k₁ k₀
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₀ : ∀ (l : ι), ¬c.Rel k₀ l h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (dite (c.Rel k₁ k₀) (h k₀ k₁) fun x ↦ 0) ≫ D.d k₁ k₀ = h k₀ k₁ r₁₀ ≫ D.d k₁ k₀
dsimp only [nullHomotopicMap]
dsimp
(dNext k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom + (prevD k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom = C.d k₁ k₀ ≫ hom k₀ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₁ : ∀ (l : ι), ¬c.Rel l k₁ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (nullHomotopicMap hom).f k₁ = C.d k₁ k₀ ≫ hom k₀ k₁
rw [dNext_eq hom r₁₀, prevD, AddMonoidHom.mk'_apply, D.shape, comp_zero, add_zero]
a
¬c.Rel (c.prev k₁) k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₁ : ∀ (l : ι), ¬c.Rel l k₁ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (dNext k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom + (prevD k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom = C.d k₁ k₀ ≫ hom k₀ k₁
dNext_eq hom r₁₀,
dNext_eq
C.d k₁ k₀ ≫ hom k₀ k₁ + (prevD k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom = C.d k₁ k₀ ≫ hom k₀ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₁ : ∀ (l : ι), ¬c.Rel l k₁ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (dNext k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom + (prevD k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom = C.d k₁ k₀ ≫ hom k₀ k₁
prevD,
this
C.d k₁ k₀ ≫ hom k₀ k₁ + (AddMonoidHom.mk' (fun f ↦ f k₁ (c.prev k₁) ≫ D.d (c.prev k₁) k₁) sorry : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom = C.d k₁ k₀ ≫ hom k₀ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₁ : ∀ (l : ι), ¬c.Rel l k₁ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ C.d k₁ k₀ ≫ hom k₀ k₁ + (prevD k₁ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom = C.d k₁ k₀ ≫ hom k₀ k₁
AddMonoidHom.mk'_apply,
this
C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ (c.prev k₁) ≫ D.d (c.prev k₁) k₁ = C.d k₁ k₀ ≫ hom k₀ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₁ : ∀ (l : ι), ¬c.Rel l k₁ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ C.d k₁ k₀ ≫ hom k₀ k₁ + (AddMonoidHom.mk' (fun f ↦ f k₁ (c.prev k₁) ≫ D.d (c.prev k₁) k₁) ⋯ : ((i j : ι) → C.X i ⟶ D.X j) → (C.X k₁ ⟶ D.X k₁)) hom = C.d k₁ k₀ ≫ hom k₀ k₁
D.shape,
this
C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ (c.prev k₁) ≫ 0 = C.d k₁ k₀ ≫ hom k₀ k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₁ : ∀ (l : ι), ¬c.Rel l k₁ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ (c.prev k₁) ≫ D.d (c.prev k₁) k₁ = C.d k₁ k₀ ≫ hom k₀ k₁
D.shape,
a
¬c.Rel (c.prev k₁) k₁
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₁ : ∀ (l : ι), ¬c.Rel l k₁ hom : (i j : ι) → C.X i ⟶ D.X j this : C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ (c.prev k₁) ≫ 0 = C.d k₁ k₀ ≫ hom k₀ k₁ ⊢ C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ (c.prev k₁) ≫ D.d (c.prev k₁) k₁ = C.d k₁ k₀ ≫ hom k₀ k₁
simp only [nullHomotopicMap']
simp
(nullHomotopicMap fun i j ↦ dite (c.Rel j i) (h i j) fun x ↦ 0).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ sorry
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₁ : ∀ (l : ι), ¬c.Rel l k₁ h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (nullHomotopicMap' h).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀
rw [nullHomotopicMap_f_of_not_rel_right r₁₀ hk₁]
rw
(C.d k₁ k₀ ≫ dite (c.Rel k₁ k₀) (h k₀ k₁) fun x ↦ 0) = C.d k₁ k₀ ≫ h k₀ k₁ sorry
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₁ : ∀ (l : ι), ¬c.Rel l k₁ h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (nullHomotopicMap fun i j ↦ dite (c.Rel j i) (h i j) fun x ↦ 0).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀
nullHomotopicMap_f_of_not_rel_right r₁₀ hk₁
nullHomotopicMap_f_of_not_rel_right
(C.d k₁ k₀ ≫ dite (c.Rel k₁ k₀) (h k₀ k₁) fun x ↦ 0) = C.d k₁ k₀ ≫ h k₀ k₁ sorry
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₁ : ∀ (l : ι), ¬c.Rel l k₁ h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (nullHomotopicMap fun i j ↦ dite (c.Rel j i) (h i j) fun x ↦ 0).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀
split_ifs
split_ifs
C.d k₁ k₀ ≫ h k₀ k₁ sorry = C.d k₁ k₀ ≫ h k₀ k₁ sorry
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₁ k₀ : ι r₁₀ : c.Rel k₁ k₀ hk₁ : ∀ (l : ι), ¬c.Rel l k₁ h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (C.d k₁ k₀ ≫ dite (c.Rel k₁ k₀) (h k₀ k₁) fun x ↦ 0) = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀
dsimp [nullHomotopicMap, dNext, prevD]
dsimp
C.d k₀ (c.next k₀) ≫ hom (c.next k₀) k₀ + hom k₀ (c.prev k₀) ≫ D.d (c.prev k₀) k₀ = 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₀ : ι hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hk₀' : ∀ (l : ι), ¬c.Rel l k₀ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ (nullHomotopicMap hom).f k₀ = 0
rw [C.shape, D.shape, zero_comp, comp_zero, add_zero]
a
¬c.Rel (c.prev k₀) k₀
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₀ : ι hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hk₀' : ∀ (l : ι), ¬c.Rel l k₀ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ C.d k₀ (c.next k₀) ≫ hom (c.next k₀) k₀ + hom k₀ (c.prev k₀) ≫ D.d (c.prev k₀) k₀ = 0
rw [C.shape, D.shape, zero_comp, comp_zero, add_zero]
a
¬c.Rel k₀ (c.next k₀)
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₀ : ι hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hk₀' : ∀ (l : ι), ¬c.Rel l k₀ hom : (i j : ι) → C.X i ⟶ D.X j a : ¬c.Rel (c.prev k₀) k₀ ⊢ C.d k₀ (c.next k₀) ≫ hom (c.next k₀) k₀ + hom k₀ (c.prev k₀) ≫ D.d (c.prev k₀) k₀ = 0
C.shape,
this
0 ≫ hom (c.next k₀) k₀ + hom k₀ (c.prev k₀) ≫ D.d (c.prev k₀) k₀ = 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₀ : ι hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hk₀' : ∀ (l : ι), ¬c.Rel l k₀ hom : (i j : ι) → C.X i ⟶ D.X j ⊢ C.d k₀ (c.next k₀) ≫ hom (c.next k₀) k₀ + hom k₀ (c.prev k₀) ≫ D.d (c.prev k₀) k₀ = 0
C.shape,
a
¬c.Rel k₀ (c.next k₀)
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₀ : ι hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hk₀' : ∀ (l : ι), ¬c.Rel l k₀ hom : (i j : ι) → C.X i ⟶ D.X j this : 0 ≫ hom (c.next k₀) k₀ + hom k₀ (c.prev k₀) ≫ D.d (c.prev k₀) k₀ = 0 ⊢ C.d k₀ (c.next k₀) ≫ hom (c.next k₀) k₀ + hom k₀ (c.prev k₀) ≫ D.d (c.prev k₀) k₀ = 0
simp only [nullHomotopicMap']
simp
(nullHomotopicMap fun i j ↦ dite (c.Rel j i) (h i j) fun x ↦ 0).f k₀ = 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D : HomologicalComplex V c k₀ : ι hk₀ : ∀ (l : ι), ¬c.Rel k₀ l hk₀' : ∀ (l : ι), ¬c.Rel l k₀ h : (i j : ι) → c.Rel j i → (C.X i ⟶ D.X j) ⊢ (nullHomotopicMap' h).f k₀ = 0
dsimp [prevD]
dsimp
f j ((ComplexShape.down ℕ).prev j) ≫ Q.d ((ComplexShape.down ℕ).prev j) j = f j (j + 1) ≫ Q.d (j + 1) j
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ f : (i j : ℕ) → P.X i ⟶ Q.X j j : ℕ ⊢ (prevD j : ((i j : ℕ) → P.X i ⟶ Q.X j) → (P.X j ⟶ Q.X j)) f = f j (j + 1) ≫ Q.d (j + 1) j
have : (ComplexShape.down ℕ).prev j = j + 1 := ChainComplex.prev ℕ j
have
f j ((ComplexShape.down ℕ).prev j) ≫ Q.d ((ComplexShape.down ℕ).prev j) j = f j (j + 1) ≫ Q.d (j + 1) j
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ f : (i j : ℕ) → P.X i ⟶ Q.X j j : ℕ ⊢ f j ((ComplexShape.down ℕ).prev j) ≫ Q.d ((ComplexShape.down ℕ).prev j) j = f j (j + 1) ≫ Q.d (j + 1) j
dsimp [dNext]
dsimp
P.d (i + 1) ((ComplexShape.down ℕ).next (i + 1)) ≫ f ((ComplexShape.down ℕ).next (i + 1)) (i + 1) = P.d (i + 1) i ≫ f i (i + 1)
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ f : (i j : ℕ) → P.X i ⟶ Q.X j i : ℕ ⊢ (dNext (i + 1) : ((i j : ℕ) → P.X i ⟶ Q.X j) → (P.X (i + 1) ⟶ Q.X (i + 1))) f = P.d (i + 1) i ≫ f i (i + 1)
have : (ComplexShape.down ℕ).next (i + 1) = i := ChainComplex.next_nat_succ _
have
P.d (i + 1) ((ComplexShape.down ℕ).next (i + 1)) ≫ f ((ComplexShape.down ℕ).next (i + 1)) (i + 1) = P.d (i + 1) i ≫ f i (i + 1)
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ f : (i j : ℕ) → P.X i ⟶ Q.X j i : ℕ ⊢ P.d (i + 1) ((ComplexShape.down ℕ).next (i + 1)) ≫ f ((ComplexShape.down ℕ).next (i + 1)) (i + 1) = P.d (i + 1) i ≫ f i (i + 1)
dsimp [dNext]
dsimp
P.d 0 ((ComplexShape.down ℕ).next 0) ≫ f ((ComplexShape.down ℕ).next 0) 0 = 0
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ f : (i j : ℕ) → P.X i ⟶ Q.X j ⊢ (dNext 0 : ((i j : ℕ) → P.X i ⟶ Q.X j) → (P.X 0 ⟶ Q.X 0)) f = 0
rw [P.shape, zero_comp]
a
¬(ComplexShape.down ℕ).Rel 0 ((ComplexShape.down ℕ).next 0)
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ f : (i j : ℕ) → P.X i ⟶ Q.X j ⊢ P.d 0 ((ComplexShape.down ℕ).next 0) ≫ f ((ComplexShape.down ℕ).next 0) 0 = 0
P.shape,
this
0 ≫ f ((ComplexShape.down ℕ).next 0) 0 = 0
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ f : (i j : ℕ) → P.X i ⟶ Q.X j ⊢ P.d 0 ((ComplexShape.down ℕ).next 0) ≫ f ((ComplexShape.down ℕ).next 0) 0 = 0
P.shape,
a
¬(ComplexShape.down ℕ).Rel 0 ((ComplexShape.down ℕ).next 0)
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ f : (i j : ℕ) → P.X i ⟶ Q.X j this : 0 ≫ f ((ComplexShape.down ℕ).next 0) 0 = 0 ⊢ P.d 0 ((ComplexShape.down ℕ).next 0) ≫ f ((ComplexShape.down ℕ).next 0) 0 = 0
rw [ChainComplex.next_nat_zero]
a
¬(ComplexShape.down ℕ).Rel 0 0
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ f : (i j : ℕ) → P.X i ⟶ Q.X j ⊢ ¬(ComplexShape.down ℕ).Rel 0 ((ComplexShape.down ℕ).next 0)
ChainComplex.next_nat_zero
a
¬(ComplexShape.down ℕ).Rel 0 0
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ f : (i j : ℕ) → P.X i ⟶ Q.X j ⊢ ¬(ComplexShape.down ℕ).Rel 0 ((ComplexShape.down ℕ).next 0)
dsimp
a
¬1 = 0
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ f : (i j : ℕ) → P.X i ⟶ Q.X j ⊢ ¬(ComplexShape.down ℕ).Rel 0 0
subst j
subst
(mkInductiveAux₂ e zero sorry one sorry succ i).snd.fst ≫ (xPrevIso Q sorry).hom = (xNextIso P sorry).inv ≫ (mkInductiveAux₂ e zero sorry one sorry succ (i + 1)).fst
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ e : P ⟶ Q zero : P.X 0 ⟶ Q.X 1 comm_zero : e.f 0 = zero ≫ Q.d 1 0 one : P.X 1 ⟶ Q.X 2 comm_one : e.f 1 = P.d 1 0 ≫ zero + one ≫ Q.d 2 1 succ : (n : ℕ) → (p : (f : P.X n ⟶ Q.X (n + 1)) ×' (f' : P.X (n + 1) ⟶ Q.X (n + 2)) ×' e.f (n + 1) = P.d (n + 1) n ≫ f + f' ≫ Q.d (n + 2) (n + 1)) → (f'' : P.X (n + 2) ⟶ Q.X (n + 3)) ×' e.f (n + 2) = P.d (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ Q.d (n + 3) (n + 2) i j : ℕ h : i + 1 = j ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom = (xNextIso P h).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ j).fst
rcases i with (_ | _ | i)
zero
(mkInductiveAux₂ e zero sorry one sorry succ 0).snd.fst ≫ (xPrevIso Q sorry).hom = (xNextIso P sorry).inv ≫ (mkInductiveAux₂ e zero sorry one sorry succ (0 + 1)).fst
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ e : P ⟶ Q zero : P.X 0 ⟶ Q.X 1 comm_zero : e.f 0 = zero ≫ Q.d 1 0 one : P.X 1 ⟶ Q.X 2 comm_one : e.f 1 = P.d 1 0 ≫ zero + one ≫ Q.d 2 1 succ : (n : ℕ) → (p : (f : P.X n ⟶ Q.X (n + 1)) ×' (f' : P.X (n + 1) ⟶ Q.X (n + 2)) ×' e.f (n + 1) = P.d (n + 1) n ≫ f + f' ≫ Q.d (n + 2) (n + 1)) → (f'' : P.X (n + 2) ⟶ Q.X (n + 3)) ×' e.f (n + 2) = P.d (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ Q.d (n + 3) (n + 2) i : ℕ ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q ⋯).hom = (xNextIso P ⋯).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (i + 1)).fst
rcases i with (_ | _ | i)
succ
(mkInductiveAux₂ e zero sorry one sorry succ (0 + 1)).snd.fst ≫ (xPrevIso Q sorry).hom = (xNextIso P sorry).inv ≫ (mkInductiveAux₂ e zero sorry one sorry succ (0 + 1 + 1)).fst
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ e : P ⟶ Q zero : P.X 0 ⟶ Q.X 1 comm_zero : e.f 0 = zero ≫ Q.d 1 0 one : P.X 1 ⟶ Q.X 2 comm_one : e.f 1 = P.d 1 0 ≫ zero + one ≫ Q.d 2 1 succ : (n : ℕ) → (p : (f : P.X n ⟶ Q.X (n + 1)) ×' (f' : P.X (n + 1) ⟶ Q.X (n + 2)) ×' e.f (n + 1) = P.d (n + 1) n ≫ f + f' ≫ Q.d (n + 2) (n + 1)) → (f'' : P.X (n + 2) ⟶ Q.X (n + 3)) ×' e.f (n + 2) = P.d (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ Q.d (n + 3) (n + 2) i : ℕ zero : (mkInductiveAux₂ e zero comm_zero one comm_one succ 0).snd.fst ≫ (xPrevIso Q ⋯).hom = (xNextIso P ⋯).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (0 + 1)).fst ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q ⋯).hom = (xNextIso P ⋯).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (i + 1)).fst
rcases i with (_ | _ | i)
succ
(mkInductiveAux₂ e zero sorry one sorry succ (i + 1 + 1)).snd.fst ≫ (xPrevIso Q sorry).hom = (xNextIso P sorry).inv ≫ (mkInductiveAux₂ e zero sorry one sorry succ (i + 1 + 1 + 1)).fst
V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V P Q : ChainComplex V ℕ e : P ⟶ Q zero : P.X 0 ⟶ Q.X 1 comm_zero : e.f 0 = zero ≫ Q.d 1 0 one : P.X 1 ⟶ Q.X 2 comm_one : e.f 1 = P.d 1 0 ≫ zero + one ≫ Q.d 2 1 succ : (n : ℕ) → (p : (f : P.X n ⟶ Q.X (n + 1)) ×' (f' : P.X (n + 1) ⟶ Q.X (n + 2)) ×' e.f (n + 1) = P.d (n + 1) n ≫ f + f' ≫ Q.d (n + 2) (n + 1)) → (f'' : P.X (n + 2) ⟶ Q.X (n + 3)) ×' e.f (n + 2) = P.d (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ Q.d (n + 3) (n + 2) i : ℕ zero : (mkInductiveAux₂ e zero comm_zero one comm_one succ 0).snd.fst ≫ (xPrevIso Q ⋯).hom = (xNextIso P ⋯).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (0 + 1)).fst succ : (mkInductiveAux₂ e zero comm_zero one comm_one succ (0 + 1)).snd.fst ≫ (xPrevIso Q ⋯).hom = (xNextIso P ⋯).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (0 + 1 + 1)).fst ⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q ⋯).hom = (xNextIso P ⋯).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (i + 1)).fst
rw [dif_neg]
hnc
¬i + 1 = j
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : P.X 0 ⟶ Q.X 1 comm_zero : e.f 0 = zero ≫ Q.d 1 0 one : P.X 1 ⟶ Q.X 2 comm_one : e.f 1 = P.d 1 0 ≫ zero + one ≫ Q.d 2 1 succ : (n : ℕ) → (p : (f : P.X n ⟶ Q.X (n + 1)) ×' (f' : P.X (n + 1) ⟶ Q.X (n + 2)) ×' e.f (n + 1) = P.d (n + 1) n ≫ f + f' ≫ Q.d (n + 2) (n + 1)) → (f'' : P.X (n + 2) ⟶ Q.X (n + 3)) ×' e.f (n + 2) = P.d (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ Q.d (n + 3) (n + 2) i j : ℕ w : ¬(ComplexShape.down ℕ).Rel j i ⊢ (if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) = 0
dif_neg
dif_neg
0 = 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : P.X 0 ⟶ Q.X 1 comm_zero : e.f 0 = zero ≫ Q.d 1 0 one : P.X 1 ⟶ Q.X 2 comm_one : e.f 1 = P.d 1 0 ≫ zero + one ≫ Q.d 2 1 succ : (n : ℕ) → (p : (f : P.X n ⟶ Q.X (n + 1)) ×' (f' : P.X (n + 1) ⟶ Q.X (n + 2)) ×' e.f (n + 1) = P.d (n + 1) n ≫ f + f' ≫ Q.d (n + 2) (n + 1)) → (f'' : P.X (n + 2) ⟶ Q.X (n + 3)) ×' e.f (n + 2) = P.d (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ Q.d (n + 3) (n + 2) i j : ℕ w : ¬(ComplexShape.down ℕ).Rel j i ⊢ (if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) = 0
dif_neg
hnc
¬i + 1 = j
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : P.X 0 ⟶ Q.X 1 comm_zero : e.f 0 = zero ≫ Q.d 1 0 one : P.X 1 ⟶ Q.X 2 comm_one : e.f 1 = P.d 1 0 ≫ zero + one ≫ Q.d 2 1 succ : (n : ℕ) → (p : (f : P.X n ⟶ Q.X (n + 1)) ×' (f' : P.X (n + 1) ⟶ Q.X (n + 2)) ×' e.f (n + 1) = P.d (n + 1) n ≫ f + f' ≫ Q.d (n + 2) (n + 1)) → (f'' : P.X (n + 2) ⟶ Q.X (n + 3)) ×' e.f (n + 2) = P.d (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ Q.d (n + 3) (n + 2) i j : ℕ w : ¬(ComplexShape.down ℕ).Rel j i dif_neg : 0 = 0 ⊢ (if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) = 0
dsimp
dsimp
e.f i = (dFrom P i ≫ (fromNext i : ((i j : ℕ) → P.X i ⟶ Q.X j) → (xNext P i ⟶ Q.X i)) fun i j ↦ if h : i + 1 = j then (mkInductiveAux₂ e zero sorry one sorry succ i).snd.fst ≫ (xPrevIso Q sorry).hom else 0) + ((toPrev i : ((i j : ℕ) → P.X i ⟶ Q.X j) → (P.X i ⟶ xPrev Q i)) fun i j ↦ if h : i + 1 = j then (mkInductiveAux₂ e zero sorry one sorry succ i).snd.fst ≫ (xPrevIso Q sorry).hom else 0) ≫ dTo Q i + 0
ι : Type u_1 V : Type u inst✝¹ : Category.{v, u} V inst✝ : Preadditive V c : ComplexShape ι C D E : HomologicalComplex V c f g : C ⟶ D h k : D ⟶ E i✝ : ι P Q : ChainComplex V ℕ e : P ⟶ Q zero : P.X 0 ⟶ Q.X 1 comm_zero : e.f 0 = zero ≫ Q.d 1 0 one : P.X 1 ⟶ Q.X 2 comm_one : e.f 1 = P.d 1 0 ≫ zero + one ≫ Q.d 2 1 succ : (n : ℕ) → (p : (f : P.X n ⟶ Q.X (n + 1)) ×' (f' : P.X (n + 1) ⟶ Q.X (n + 2)) ×' e.f (n + 1) = P.d (n + 1) n ≫ f + f' ≫ Q.d (n + 2) (n + 1)) → (f'' : P.X (n + 2) ⟶ Q.X (n + 3)) ×' e.f (n + 2) = P.d (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ Q.d (n + 3) (n + 2) i : ℕ ⊢ e.f i = (((dNext i : ((i j : ℕ) → P.X i ⟶ Q.X j) → (P.X i ⟶ Q.X i)) fun i j ↦ if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) + (prevD i : ((i j : ℕ) → P.X i ⟶ Q.X j) → (P.X i ⟶ Q.X i)) fun i j ↦ if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) + Hom.f 0 i
End of preview. Expand in Data Studio

Dataset Card for "tactic-haveDraft7"

More Information needed

Downloads last month
113