Datasets:
Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'stations'}) and 10 missing columns ({'is_fast_dc', 'power_kw', 'state_province', 'city', 'name', 'latitude', 'power_class', 'longitude', 'ports', 'id'}). This happened while the csv dataset builder was generating data using hf://datasets/TarekMasryo/Global-EV-Charging-Stations/country_summary_2025.csv (at revision 9b1f96910452041b7aaa80952b0efb7a016735c1) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast country_code: string stations: int64 -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 498 to {'id': Value('int64'), 'name': Value('string'), 'city': Value('string'), 'country_code': Value('string'), 'state_province': Value('string'), 'latitude': Value('float64'), 'longitude': Value('float64'), 'ports': Value('int64'), 'power_kw': Value('float64'), 'power_class': Value('string'), 'is_fast_dc': Value('bool')} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'stations'}) and 10 missing columns ({'is_fast_dc', 'power_kw', 'state_province', 'city', 'name', 'latitude', 'power_class', 'longitude', 'ports', 'id'}). This happened while the csv dataset builder was generating data using hf://datasets/TarekMasryo/Global-EV-Charging-Stations/country_summary_2025.csv (at revision 9b1f96910452041b7aaa80952b0efb7a016735c1) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
id
int64 | name
string | city
string | country_code
string | state_province
null | latitude
float64 | longitude
float64 | ports
int64 | power_kw
float64 | power_class
string | is_fast_dc
bool |
---|---|---|---|---|---|---|---|---|---|---|
307,660 |
Av. de Tarragona
|
Andorra
|
AD
| null | 42.505254 | 1.528861 | 10 | 300 |
DC_ULTRA_(>=150kW)
| true |
301,207 |
Parquing Costa Rodona
|
Encamp
|
AD
| null | 42.537213 | 1.727014 | 10 | 22 |
AC_HIGH_(22-49kW)
| false |
301,206 |
Hotel Naudi
| null |
AD
| null | 42.576811 | 1.666061 | 1 | 11 |
AC_L2_(7.5-21kW)
| false |
301,205 |
Hotel Piolets Soldeu Centre
| null |
AD
| null | 42.576466 | 1.667317 | 1 | 22 |
AC_HIGH_(22-49kW)
| false |
301,204 |
Hotel Serras
| null |
AD
| null | 42.579458 | 1.659215 | 3 | 11 |
AC_L2_(7.5-21kW)
| false |
301,203 |
HOTEL LLOP GRIS
| null |
AD
| null | 42.57807 | 1.64882 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
301,202 |
Aparcament font del ferro
| null |
AD
| null | 42.58257 | 1.636854 | 3 | 11 |
AC_L2_(7.5-21kW)
| false |
301,201 |
Hotel l'Ermita
| null |
AD
| null | 42.554031 | 1.589863 | 1 | 11 |
AC_L2_(7.5-21kW)
| false |
301,200 |
Restaurante Hotel Les Pardines
|
Encamp
|
AD
| null | 42.530853 | 1.600491 | 1 | 11 |
AC_L2_(7.5-21kW)
| false |
301,199 |
La Solana Apartaments & Spa
|
Encamp
|
AD
| null | 42.534027 | 1.588139 | 1 | 7.4 |
AC_L1_(<7.5kW)
| false |
301,198 |
Estacio Ordino Arcalis Planells
| null |
AD
| null | 42.629215 | 1.498094 | 6 | 7.4 |
AC_L1_(<7.5kW)
| false |
301,197 |
Hotel Ordino
|
Ordino
|
AD
| null | 42.5557 | 1.533428 | 1 | 3.3 |
AC_L1_(<7.5kW)
| false |
301,196 |
Hotel Princesa Parc
|
La Massana
|
AD
| null | 42.573917 | 1.482224 | 1 | 11 |
AC_L2_(7.5-21kW)
| false |
301,195 |
Parking la Borda del avi
|
La Massana
|
AD
| null | 42.551185 | 1.510482 | 4 | 11 |
AC_L2_(7.5-21kW)
| false |
301,194 |
Apartaments Giberga
|
La Massana
|
AD
| null | 42.54662 | 1.524825 | 1 | 7.4 |
AC_L1_(<7.5kW)
| false |
301,193 |
AnyΓ³sPark The Mountain & Wellness Resort
|
La Massana
|
AD
| null | 42.531792 | 1.524056 | 4 | 7.4 |
AC_L1_(<7.5kW)
| false |
301,192 |
Hotel Silken Insitu Eurotel
|
les Escaldes
|
AD
| null | 42.513697 | 1.533125 | 1 | 11 |
AC_L2_(7.5-21kW)
| false |
301,191 |
Hotel Panorama
|
les Escaldes
|
AD
| null | 42.507949 | 1.540879 | 2 | 11 |
AC_L2_(7.5-21kW)
| false |
301,190 |
Hotel Metropolis
|
les Escaldes
|
AD
| null | 42.510163 | 1.540748 | 2 | 11 |
AC_L2_(7.5-21kW)
| false |
301,189 |
Hotel Golden Tulip
|
les Escaldes
|
AD
| null | 42.509204 | 1.540313 | 2 | 11 |
AC_L2_(7.5-21kW)
| false |
301,188 |
Empark Escaldes Centre
|
les Escaldes
|
AD
| null | 42.509641 | 1.53862 | 4 | 22 |
AC_HIGH_(22-49kW)
| false |
301,187 |
Hotel Starc
|
Andorra la Vella
|
AD
| null | 42.508013 | 1.532927 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
301,186 |
Hotel MΓ gic Andorra
|
Andorra la Vella
|
AD
| null | 42.509306 | 1.529974 | 1 | 11 |
AC_L2_(7.5-21kW)
| false |
301,185 |
Avinguda Meritxell
|
Andorra la Vella
|
AD
| null | 42.508475 | 1.524948 | 2 | 60 |
DC_FAST_(50-149kW)
| true |
301,184 |
Hotel Cervol
|
Andorra la Vella
|
AD
| null | 42.503007 | 1.5132 | 1 | 22 |
AC_HIGH_(22-49kW)
| false |
301,183 |
Carrer Prat Salit
| null |
AD
| null | 42.495534 | 1.50545 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
301,181 |
Hotel Coma Bella
| null |
AD
| null | 42.446477 | 1.494454 | 1 | 11 |
AC_L2_(7.5-21kW)
| false |
301,180 |
Naturland Cota 1600
| null |
AD
| null | 42.44192 | 1.50058 | 4 | 11 |
AC_L2_(7.5-21kW)
| false |
301,179 |
Supermercat Punt de Trobada
| null |
AD
| null | 42.439135 | 1.491917 | 1 | 11 |
AC_L2_(7.5-21kW)
| false |
301,178 |
C.C. River
| null |
AD
| null | 42.45371 | 1.486762 | 4 | 7.4 |
AC_L1_(<7.5kW)
| false |
299,667 |
Saltoki Andorra
| null |
AD
| null | 42.496702 | 1.499028 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
295,902 |
Parking Cubill Grau Roig
|
Encamp
|
AD
| null | 42.531766 | 1.696522 | 10 | 7.4 |
AC_L1_(<7.5kW)
| false |
295,900 |
Parking VIP Grau Roig
|
Encamp
|
AD
| null | 42.532671 | 1.700021 | 16 | 59 |
DC_FAST_(50-149kW)
| true |
281,157 |
121 PARC FLUVIAL
| null |
AD
| null | 42.498835 | 1.508645 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,156 |
225 Aparcament Andorra 2000
|
Andorra la Vella
|
AD
| null | 42.505345 | 1.530589 | 3 | 6 |
AC_L1_(<7.5kW)
| false |
281,155 |
202 APARCAMENT MCAUTO
|
Andorra la Vella
|
AD
| null | 42.505005 | 1.528173 | 1 | 22 |
AC_HIGH_(22-49kW)
| false |
281,154 |
117 Andorra Carrer de la Unio
|
les Escaldes
|
AD
| null | 42.507375 | 1.534481 | 2 | 50 |
DC_FAST_(50-149kW)
| true |
281,153 |
118 Andorra Prada Casadet QC 50
|
Andorra la Vella
|
AD
| null | 42.506091 | 1.522817 | 2 | 50 |
DC_FAST_(50-149kW)
| true |
281,152 |
107 Andorra Aparcament Pyrenees P22
|
Andorra la Vella
|
AD
| null | 42.508629 | 1.523756 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,151 |
104 Andorra Carrer Pompeu Fabra P22
|
Andorra la Vella
|
AD
| null | 42.50739 | 1.526513 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,150 |
101 Andorra Aparcament Valira P22
|
Andorra la Vella
|
AD
| null | 42.509338 | 1.533784 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,149 |
111 Escaldes Aparcament Veedors P22
|
les Escaldes
|
AD
| null | 42.509995 | 1.535456 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,148 |
114 Escaldes Prat Gran P22
|
les Escaldes
|
AD
| null | 42.509591 | 1.539121 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,147 |
112 Escaldes Rotonda Engolasters P22
|
les Escaldes
|
AD
| null | 42.512098 | 1.55009 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,146 |
103 Encamp FEDA P22
|
Encamp
|
AD
| null | 42.514836 | 1.553202 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,145 |
127 Aparcament de la Vena
|
Encamp
|
AD
| null | 42.531779 | 1.575758 | 2 | 6 |
AC_L1_(<7.5kW)
| false |
281,144 |
108 Encamp Prat de BarΓ³ P22
|
Encamp
|
AD
| null | 42.533503 | 1.580501 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,143 |
109 Encamp Els Arinsols P22
|
Encamp
|
AD
| null | 42.536644 | 1.583815 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,142 |
125 Aparcament edifici telecabina Canillo
|
Canillo
|
AD
| null | 42.566483 | 1.601121 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,141 |
119 Aparcament Telecabina del Tarter P22
| null |
AD
| null | 42.578442 | 1.646408 | 4 | 22 |
AC_HIGH_(22-49kW)
| false |
281,140 |
115 Soldeu P22
| null |
AD
| null | 42.576997 | 1.666538 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,139 |
305 Aparcament Avet
| null |
AD
| null | 42.575748 | 1.666805 | 4 | 6.4 |
AC_L1_(<7.5kW)
| false |
281,138 |
211 Aparcament Basers
| null |
AD
| null | 42.575642 | 1.669352 | 2 | 6.4 |
AC_L1_(<7.5kW)
| false |
281,137 |
401 ESGLESIA_PAS_DE_LA_CASA
|
Encamp
|
AD
| null | 42.543322 | 1.73356 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,136 |
601 NASA_ARCALIS
| null |
AD
| null | 42.63182 | 1.499841 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,135 |
609 NASA_SORTENY
| null |
AD
| null | 42.625854 | 1.551854 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,134 |
705 Arans CG3
| null |
AD
| null | 42.582808 | 1.519418 | 4 | 6.4 |
AC_L1_(<7.5kW)
| false |
281,133 |
704 Aparcament La Cortinada
|
Ordino
|
AD
| null | 42.572106 | 1.518583 | 4 | 6.4 |
AC_L1_(<7.5kW)
| false |
281,132 |
701 Ordino Av. de les Moles
|
SornΓ s
|
AD
| null | 42.5639 | 1.527472 | 4 | 6.4 |
AC_L1_(<7.5kW)
| false |
281,131 |
701 Ordino Av. de les Moles
|
Ordino
|
AD
| null | 42.559553 | 1.531792 | 2 | 6.4 |
AC_L1_(<7.5kW)
| false |
281,130 |
702 Ordino Aparcament Plana de Babot
|
Ordino
|
AD
| null | 42.553512 | 1.531241 | 4 | 6.4 |
AC_L1_(<7.5kW)
| false |
281,129 |
703 Ordino Urb. Clota Verda
|
Ordino
|
AD
| null | 42.553777 | 1.52949 | 4 | 6.4 |
AC_L1_(<7.5kW)
| false |
281,128 |
604 NASA_ORDINO_AUDITORI
|
Ordino
|
AD
| null | 42.55662 | 1.535139 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,127 |
606 NASA_ORDINO_CEO
|
Ordino
|
AD
| null | 42.556215 | 1.532466 | 1 | 22 |
AC_HIGH_(22-49kW)
| false |
281,126 |
605 NASA_EL_TRAVES
|
La Massana
|
AD
| null | 42.545445 | 1.518143 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,125 |
603 NASA_LA_CLOSETA
|
La Massana
|
AD
| null | 42.544595 | 1.51546 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,124 |
608 NASA_FARRERA_NEGRA
|
La Massana
|
AD
| null | 42.546907 | 1.514457 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,122 |
607 NASA_PRAT_DEL_COLAT
|
La Massana
|
AD
| null | 42.549353 | 1.512004 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,121 |
602 NASA_CAUBELLA
|
La Massana
|
AD
| null | 42.536231 | 1.491806 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,120 |
611 NASA_ARINSAL_TCB
|
La Massana
|
AD
| null | 42.572038 | 1.483783 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,119 |
610 NASA_COLL_DE_LA_BOTELLA
|
La Massana
|
AD
| null | 42.544781 | 1.453206 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,118 |
Centre Comercial Nou Punt
| null |
AD
| null | 42.448096 | 1.482031 | 15 | 7.4 |
AC_L1_(<7.5kW)
| false |
281,117 |
510 MUTUA_GERMANDAT
|
Sant JuliΓ de LΓ²ria
|
AD
| null | 42.465236 | 1.490274 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
281,116 |
511 MUTUA_PRAT_NOU
|
Sant JuliΓ de LΓ²ria
|
AD
| null | 42.46854 | 1.493076 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
211,110 |
Parking Saba
|
Andorra la Vella
|
AD
| null | 42.508729 | 1.530795 | 4 | 22 |
AC_HIGH_(22-49kW)
| false |
202,291 |
Andorra Racing Saturn
|
Andorra la Vella
|
AD
| null | 42.505041 | 1.515253 | 4 | 180 |
DC_ULTRA_(>=150kW)
| true |
163,394 |
Hotel Guillem
|
Encamp
|
AD
| null | 42.535629 | 1.58318 | 1 | 7.4 |
AC_L1_(<7.5kW)
| false |
91,855 |
Sport Hotel Hermitage
|
Soldeu
|
AD
| null | 42.575459 | 1.671297 | 3 | 22 |
AC_HIGH_(22-49kW)
| false |
88,308 |
Hotel BringuΓ©
|
El Serrat
|
AD
| null | 42.61977 | 1.540007 | 1 | 22 |
AC_HIGH_(22-49kW)
| false |
85,496 |
Hotel Roc Blanc
|
Escaldes
|
AD
| null | 42.509213 | 1.539297 | 1 | 22 |
AC_HIGH_(22-49kW)
| false |
85,154 |
Grau Roig Andorra Boutique Hotel & Spa
|
Grau Roig
|
AD
| null | 42.532655 | 1.701198 | 1 | 11 |
AC_L2_(7.5-21kW)
| false |
84,889 |
Hotel Piolets Park & Spa
|
Soldeu
|
AD
| null | 42.577997 | 1.663842 | 2 | 4 |
AC_L1_(<7.5kW)
| false |
84,189 |
Andorra Park Hotel
|
Andorra La Vella
|
AD
| null | 42.509276 | 1.522417 | 1 | 22 |
AC_HIGH_(22-49kW)
| false |
84,122 |
Hotel Nordic
|
El Tarter
|
AD
| null | 42.577795 | 1.650187 | 3 | 22 |
AC_HIGH_(22-49kW)
| false |
82,186 |
Centro Comercial Illa Carlemany
|
Escaldes-Engordany
|
AD
| null | 42.508714 | 1.534675 | 4 | 22 |
AC_HIGH_(22-49kW)
| false |
80,033 |
Holiday Inn Andorra
|
Andorra la Vella
|
AD
| null | 42.505845 | 1.519892 | 1 | 22 |
AC_HIGH_(22-49kW)
| false |
79,795 |
Hotel PalomΓ©
|
Erts
|
AD
| null | 42.565144 | 1.491052 | 1 | 22 |
AC_HIGH_(22-49kW)
| false |
75,344 |
Hotel Plaza Andorra
|
Andorra la Vella
|
AD
| null | 42.506722 | 1.532278 | 1 | 22 |
AC_HIGH_(22-49kW)
| false |
73,220 |
Sta Coloma MossΓ©n LluΓs Pujol
|
Santa Coloma
|
AD
| null | 42.496959 | 1.500966 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
73,219 |
Escaldes FalguerΓ³
|
Engordany
|
AD
| null | 42.512114 | 1.533495 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
73,218 |
120 Escaldes Esglesia P22
|
Escaldes-Engordany
|
AD
| null | 42.509108 | 1.542121 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
73,217 |
Escaldes Aparcament ILLA
|
Escaldes-Engordany
|
AD
| null | 42.508905 | 1.5341 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
73,216 |
Andorra Govern
|
Andorra la Vella
|
AD
| null | 42.506263 | 1.522724 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
73,215 |
Andorra Ana Maria Pla
|
Andorra la Vella
|
AD
| null | 42.507497 | 1.53326 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
73,214 |
Encamp La Palanqueta
|
Encamp
|
AD
| null | 42.534485 | 1.579488 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
73,213 |
Canillo Prat del Riu
|
Canillo
|
AD
| null | 42.565901 | 1.598916 | 2 | 22 |
AC_HIGH_(22-49kW)
| false |
303,054 |
Tesla Supercharger Sharjah
|
Sharjah
|
AE
| null | 25.325776 | 55.394672 | 8 | 250 |
DC_ULTRA_(>=150kW)
| true |
303,053 |
Tesla Supercharger Ras Al Khaimah
|
Ras Al Khaimah
|
AE
| null | 25.791492 | 55.966309 | 8 | 250 |
DC_ULTRA_(>=150kW)
| true |
303,052 |
Tesla Supercharger Fujairah
|
Fujairah City
|
AE
| null | 25.156768 | 56.349107 | 8 | 250 |
DC_ULTRA_(>=150kW)
| true |
303,051 |
Tesla Supercharger Dubai
|
Dubai
|
AE
| null | 25.199541 | 55.283352 | 16 | 250 |
DC_ULTRA_(>=150kW)
| true |
End of preview.
π Global EV Charging Stations & EV Models Dataset (2025 Snapshot)
Author: Tarek Masryo Β· Kaggle
Version: v1.0 (2025-09-01)
License: CC BY 4.0
π TL;DR
A clean, analysis-ready dataset capturing the state of EV infrastructure in 2025:
- 242,417 rows across 121 countries
- 11 tidy columns describing charging sites
- Companion files: country/world roll-ups + EV models
π Why this dataset?
Electric mobility is booming, but data is scattered, inconsistent, and full of gaps.
This project offers a single, clean CSV snapshot plus contextual summaries, making it ideal for:
- EV adoption analysis
- Energy planning & sustainability research
- Machine learning & dashboard prototyping
π Files Included
charging_stations_2025_world.csv
β global stations (main file)country_summary_2025.csv
β per-country roll-upworld_summary_2025.csv
β global KPIsev_models_2025.csv
β companion EV model specsOCM_CC_BY_4.0.txt
β license textdataset-metadata.json
β structured metadata
ποΈ Data Dictionary
charging_stations_2025_world.csv
Column | Type | Description |
---|---|---|
id | int | Unique station ID (OCM) |
name | str | Station name |
city | str | City name |
country_code | str | ISO-2 country code |
state_province | str | State/Province (if available) |
latitude | float | WGS84 latitude |
longitude | float | WGS84 longitude |
ports | int | Number of charging points at the site |
power_kw | float | Maximum charging power (kW) |
power_class | str | Derived class (slow/fast/HPC) |
is_fast_dc | bool | True if power_kw β₯ 50 |
country_summary_2025.csv
Column | Type | Description |
---|---|---|
country | str | Country name |
total_stations | int | Number of stations |
avg_ports | float | Avg. ports per site |
avg_power_kw | float | Avg. power (kW) |
ev_adoption_rate | float | Estimated adoption rate (%) |
ev_models_2025.csv
Column | Type | Description |
---|---|---|
model_id | int | EV model unique ID |
brand | str | Manufacturer |
model | str | Model name |
battery_kwh | float | Battery capacity (kWh) |
max_range_km | int | Max driving range (km) |
fast_charging | bool | Supports fast charging (yes/no) |
world_summary_2025.csv
Column | Type | Description |
---|---|---|
year | int | Year of snapshot |
total_countries | int | Countries included (121) |
total_stations | int | Global total stations |
total_ev_models | int | Number of EV models tracked |
avg_global_power | float | Global avg. power (kW) |
π οΈ Quickstart
from datasets import load_dataset
# Load dataset
ds = load_dataset("TarekMasryo/Global-EV-Charging-Stations")
# Explore
print(ds)
print(ds["train"][0])
π‘ Suggested Uses
- Compare EV infrastructure across regions
- Measure share of fast-DC vs slow charging
- Build EV adoption dashboards
- Train ML models for site clustering or adoption forecasting
- Prototype routing/location tools for EV drivers
π License & Attribution
- Charging station data: Β© Open Charge Map β CC BY 4.0
β βContains data Β© Open Charge Map contributors.β - EV models: compiled from CC0-friendly sources. Attribution optional.
- Downloads last month
- 31