license: mit
language:
- en
tags:
- conversations
- tagging
- embeddings
- bittensor
pretty_name: Bittensor Conversational Tagging and Embedding
size_categories:
- 1M<n<10M
ποΈ ReadyAI - Bittensor Conversational Tagging and Embedding Dataset
ReadyAI is an open-source initiative focused on low-cost, resource-minimal pipelines for structuring raw data for AI applications.
This dataset is part of the ReadyAI Conversational Genome Project, leveraging the Bittensor decentralized network.
AI runs on structured data β and this dataset bridges the gap between raw conversation transcripts and structured, vectorized semantic tags.
You can find more about our subnet on GitHub here.
π Dataset Overview
This dataset contains annotated conversation transcripts with:
- Human-readable semantic tags
- Embedding vectors contextualized to each conversation
- Participant metadata
It is ideal for:
- Conversational AI training
- Dialogue understanding research
- Retrieval-augmented generation (RAG)
- Semantic search
- Fine-tuning large language models (LLMs)
π Dataset Structure
The dataset consists of four main components:
1. data/bittensor-conversational-tags-and-embeddings-part-*.parquet β Tag Embeddings and Metadata
Each Parquet file contains rows with:
Column | Type | Description |
---|---|---|
c_guid | int64 | Unique conversation group ID |
tag_id | int64 | Unique identifier for the tag |
tag | string | Semantic tag (e.g., "climate change") |
vector | list of float32 | Embedding vector representing the tag's meaning in the conversation's context |
β Files split into ~1GB chunks for efficient loading and streaming.
2. tag_to_id.parquet β Tag Mapping
Mapping between tag IDs and human-readable tags.
Column | Type | Description |
---|---|---|
tag_id | int64 | Unique tag ID |
tag | string | Semantic tag text |
β Useful for reverse-mapping tags from models or outputs.
3. conversations_to_tags.parquet β Conversation-to-Tag Mappings
Links conversations to their associated semantic tags.
Column | Type | Description |
---|---|---|
c_guid | int64 | Conversation group ID |
tag_ids | list of int64 | List of tag IDs relevant to the conversation |
β For supervised training, retrieval tasks, or semantic labeling.
4. conversations.parquet β Full Conversation Text and Participants
Contains the raw multi-turn dialogue and metadata.
Column | Type | Description |
---|---|---|
c_guid | int64 | Conversation group ID |
transcript | string | Full conversation text |
participants | list of strings | List of speaker identifiers |
β Useful for dialogue modeling, multi-speaker AI, or fine-tuning.
π How to Use
Install dependencies
pip install pandas pyarrow
Load a single Parquet split
import pandas as pd
df = pd.read_parquet("data/bittensor-conversational-tags-and-embeddings-part-0000.parquet")
print(df.head())
Load all tag splits
import pandas as pd
import glob
files = sorted(glob.glob("data/bittensor-conversational-tags-and-embeddings-part-*.parquet"))
df_tags = pd.concat((pd.read_parquet(f) for f in files), ignore_index=True)
print(f"Loaded {len(df_tags)} tag records.")
Load tag dictionary
tag_dict = pd.read_parquet("tag_to_id.parquet")
print(tag_dict.head())
Load conversation to tags mapping
df_mapping = pd.read_parquet("conversations_to_tags.parquet")
print(df_mapping.head())
Load full conversations dialog and metadata
df_conversations = pd.read_parquet("conversations.parquet")
print(df_conversations.head())
π₯ Example: Reconstruct Tags for a Conversation
# Build tag lookup
tag_lookup = dict(zip(tag_dict['tag_id'], tag_dict['tag']))
# Pick a conversation
sample = df_mapping.iloc[0]
c_guid = sample['c_guid']
tag_ids = sample['tag_ids']
# Translate tag IDs to human-readable tags
tags = [tag_lookup.get(tid, "Unknown") for tid in tag_ids]
print(f"Conversation {c_guid} has tags: {tags}")
π¦ Handling Split Files
Situation | Strategy |
---|---|
Enough RAM | Use pd.concat() to merge splits |
Low memory | Process each split one-by-one |
Hugging Face datasets | Use streaming mode |
Example (streaming with Hugging Face datasets
)
from datasets import load_dataset
# Stream the dataset directly
dataset = load_dataset(
"ReadyAi/bittensor-conversational-tags-and-embeddings",
split="train",
streaming=True
)
for example in dataset:
print(example)
break
π License
MIT License β
β
Free to use and modify,
β Commercial redistribution without permission is prohibited.
β¨ Credits
Built using contributions from Bittensor conversational miners and the ReadyAI open-source community.
π― Summary
Component | Description |
---|---|
parquets/part_*.parquet | Semantic tags and their contextual embeddings |
tag_to_id.parquet | Dictionary mapping of tag IDs to text |
conversations_to_tags.parquet | Links conversations to tags |
conversations.parquet | Full multi-turn dialogue with participant metadata |