wenzhuoliu's picture
Update README.md
405cdae
---
dataset_info:
- config_name: Documents
features:
- name: doc_id
dtype: string
- name: doc
dtype: string
splits:
- name: history
num_bytes: 508218
num_examples: 224
- name: religion
num_bytes: 302837
num_examples: 126
- name: recherche
num_bytes: 235256
num_examples: 69
- name: python
num_bytes: 660763
num_examples: 194
download_size: 952235
dataset_size: 1707074
- config_name: MOOC_MCQ_Queries
features:
- name: query_id
dtype: string
- name: query
dtype: string
- name: answers
sequence: string
- name: distractions
sequence: string
- name: relevant_docs
sequence: string
splits:
- name: history
num_bytes: 13156
num_examples: 58
- name: religion
num_bytes: 52563
num_examples: 125
- name: recherche
num_bytes: 18791
num_examples: 52
- name: python
num_bytes: 29759
num_examples: 85
download_size: 80494
dataset_size: 114269
configs:
- config_name: Documents
data_files:
- split: history
path: Documents/history-*
- split: religion
path: Documents/religion-*
- split: recherche
path: Documents/recherche-*
- split: python
path: Documents/python-*
- config_name: MOOC_MCQ_Queries
data_files:
- split: history
path: MOOC_MCQ_Queries/history-*
- split: religion
path: MOOC_MCQ_Queries/religion-*
- split: recherche
path: MOOC_MCQ_Queries/recherche-*
- split: python
path: MOOC_MCQ_Queries/python-*
---
# Text embedding Datasets
The text embedding datasets consist of several (query, passage) paired datasets aiming for text-embedding model finetuning. These datasets are ideal for developing and testing algorithms in the fields of natural language processing, information retrieval, and similar applications.
## Dataset Details
Each dataset in this collection is structured to facilitate the training and evaluation of text-embedding models. The datasets are diverse, covering multiple domains and formats. They are particularly useful for tasks like semantic search, question-answering systems, and document retrieval.
### [MOOC MCQ Queries]
The "MOOC MCQ Queries" dataset is derived from [FUN MOOC](https://www.fun-mooc.fr/fr/), an online platform offering a wide range of French courses across various domains. This dataset is uniquely valuable for its high-quality content, manually curated to assist students in understanding course materials better.
#### Content Overview:
- **Language**: French
- **Domains**:
- History: 57 examples
- Religion: 125 examples
- [Other domains to be added]
- **Dataset Description**:
Each record in the dataset includes the following fields:
```json
{
"query_id": "Unique identifier for each query",
"query": "Text of the multiple-choice question (MCQ)",
"answers": ["List of correct answer choices"],
"distractions": ["List of incorrect choices"],
"relevant_docs": ["List of relevant document IDs aiding the answer"]
}
```
- **statistics**:
| Category | Num. of Queries | Query Avg. Words | Number of Docs | Short Docs (<375 words) | Long Docs (≥375 words) | Doc Avg. Words |
|----------------|-----------------|------------------|----------------|-------------------------|------------------------|----------------|
| history | 57 | 11.31 | 224 | 147 | 77 | 351.79 |
| religion | 125 | 15.08 | 126 | 78 | 48 | 375.63 |
| recherche | 52 | 12.71 | 69 | 20 | 49 | 535.00 |
| python | 85 | 21.24 | 194 | 27 | 167 | 552.60 |
### [Wikitext generated Queries]
To complete
### [Documents]
This dataset is an extensive collection of document chunkings or entire document for short texts, designed to complement the MOOC MCQ Queries and other datasets in the collection.
- **chunking strategies**:
- MOOC MCQ Queries: documents are chunked according to their natural divisions, like sections or subsections, ensuring that each chunk maintains contextual integrity.
- **content format**:
```json
{
"doc_id": "Unique identifier for each document",
"doc": "Text content of the document"
}
```