Dataset Viewer (First 5GB)
Auto-converted to Parquet
No
int64
from
string
value
string
emotion
string
length
float64
score_arousal
float64
score_prosody
float64
score_nature
float64
score_expressive
float64
audio-path
audio
9
user
什么玩情调啊, 咱们学校宿舍那个, 二层高架床, 我
Anger
4
0.648067
0.583405
0.931562
0.59176
10
assistant
哈哈哈哈哈哈
Happy
1.880063
0.924365
0.703145
0.94412
0.968771
10
user
回来了就回来了, 回来你顶多, 水平不行你就别骑了呗, 哼什么哼什么
Neutral
4.679938
0.406345
0.349066
0.873773
0.504678
11
assistant
别喝了
Disgust
2.72
0.661175
0.647296
1.023548
0.673784
1
user
自己先练, 这事不是马虎的事,啊, 你吃个垃圾食品什么的, 上个网什么的我允许你, 骑自行车,万一
Neutral
8.640063
0.296496
0.312497
0.902624
0.468507
2
assistant
哎呀,行行行,反正你让我练, 我就当你, 默许我可以骑了
Anger, Neutral
3.96
0.818185
0.685863
0.899119
0.691178
6
user
你不去, 我也要跟你妈通个电话, 感谢你妈这段时间, 对你小姨的照顾
Neutral
4.2
-0.049725
0.165955
0.788087
0.472099
7
assistant
别别别,小姨夫, 唐,唐老师, 求你了别给我妈打电话
Fear
3.849313
0.729782
0.645955
0.98065
0.669291
2
user
不是, 这么着急啊? 您儿子不是在国外吗?
Sad
2.56
0.56821
0.486527
0.848771
0.554393
3
assistant
他,在,国外, 但是, 他明天就回来了呀! 你说他, 马上就要拖家带口的, 不方便和我这个老太婆挤在一起, 你说对不啦!
Neutral, Happy
10.680125
0.922647
0.780491
0.926542
0.930678
4
user
唉,那个,张姨, 您是不是想涨房租啊? 如果是的话,我们可以谈的
Neutral
5.8
0.233523
0.473785
0.791965
0.491992
5
assistant
哎哟!瞧你这话说的, 你看张姨我, 像是那么势利的人吗?
Sad
6
0.933767
0.733375
0.878877
0.974586
2
user
不是,张姨, 你看我这么多东西, 我来不及
Neutral
2.239938
0.70962
0.598376
0.919509
0.560239
3
assistant
哎呀! 东西多也可以慢慢收拾好的呀! 就这样了, 你赶紧收拾啊! 搬出去啊,好吧
Anger
4.498125
0.900949
0.710735
0.906077
0.982562
4
user
恩,,如果有地铁的话, 远一点也无所谓
Neutral
3.88
0.293029
0.362402
0.840896
0.485661
5
assistant
铁艺床! 大阳台! 上海夜景! 它全部都符合啊!
Happy
4.96
0.818672
0.705948
0.856037
0.747987
1
user
不过话说回来, 你咋了?
Neutral, Surprise
1.6
0.022303
0.209759
0.903747
0.471316
2
assistant
呜呜呜,君君, 我感觉好像失恋了一样, 我的白马王子好像有女朋友了, 我的故事都还没开始就结束了
Sad
15.72
0.856158
0.749464
0.918363
0.797198
5
user
我觉得你也别想太多了, 万一这个人的网名就叫小甜心呢? 她有可能正在追你男神, 还没追到
Neutral
5.87975
0.421273
0.464303
0.842276
0.514809
6
assistant
可是, 他给我备注是便利店小妹诶, 你想想, 如果你真的对一个人有好感, 你会给他这么备注吗?
Sad, Anger
6.91975
0.688605
0.70102
0.890002
0.668568
2
user
额,,袁帅,我,其实
Fear
1.119938
0.358236
0.44841
0.966804
0.542403
3
assistant
宝宝, 从今往后, 我们就是一家四口了, 我们就是一家四口了! 我就要当爸爸了! 我要当爸爸了!
Happy
9.200125
0.883835
0.741003
0.941899
0.956007
4
user
我承认,我是着急了, 才给袁帅写了推荐信, 但是我们绝对没有做过, 帖子上说的其他乱七八糟的事情
Neutral, Sad
6.03975
0.306157
0.280755
0.831974
0.467866
5
assistant
你觉得你现在摆出一副, 清者自清的样子, 别人能信吗?
Anger
2.760125
0.68484
0.549249
0.972919
0.658871
2
user
我看你还是赶紧回去, 学学游泳吧!
Neutral
3.08
0.018376
0.163968
0.791615
0.472099
3
assistant
你不是说, 两个礼拜的时间就够了吗? 怎么现在改口了,你骗我!
Anger
4.400063
0.620557
0.546094
0.967376
0.649663
2
user
我突然反悔了
Neutral
1.16
0.178762
0.247621
0.896294
0.47171
3
assistant
你在这个时候反悔? 你刚才下错那步棋, 把我之前的部署全都打乱了! 你知不知道!
Anger
4.84
0.744914
0.659012
0.95747
0.72005
3
user
到时候实在没人, 你就自己上
Neutral
2.12
0.066052
0.207771
0.925231
0.478205
4
assistant
我? 下围乙? 围甲我都不去!
Surprise, Disgust
3.519938
0.641114
0.573843
0.972053
0.645355
1
user
那屋留给你了
Neutral
2.08
0.197357
0.283761
0.917304
0.474527
2
assistant
那大屋? 行啊你! 你怎么那么好呢! 来亲!
Surprise, Happy
4.6
0.816754
0.71247
0.965431
0.785086
8
user
那沙发是干嘛用的啊
Disgust
1.8
0.54025
0.504711
0.936351
0.583825
9
assistant
你坐呀!我坐! 那你朋友来你坐哪儿啊, 不是你不得有
Anger
4.08
0.842327
0.697705
0.903177
0.890598
3
user
不是,咱们家这么宽敞, 人多了也没事啊, 你说妈妈照顾你们多方便啊!
Neutral
5.36
0.387042
0.510625
0.84033
0.521986
4
assistant
是方便, 那时候人家一来一看, 时光有工作了还住家里, 什么事啊这叫!
Neutral, Disgust
5.08
0.617087
0.506925
0.966703
0.650602
6
user
等我复读个十次, 您就不会觉得, 这条路是最近的那条了
Neutral
3.92
0.013631
0.201707
0.781929
0.472099
7
assistant
贺今朝, 你以为你妈是在跟你开玩笑呢, 你这样, 怎么对你以后的人生负责呀
Anger
5.72
0.727353
0.73251
0.907005
0.699109
2
user
行了行了,你别瞎说了, 还不都是你玩什么泰坦尼克号, 这下好了, 真成泰坦尼克号了
Disgust
5.8
0.413385
0.376277
0.933783
0.511529
3
assistant
谈宋,我还不想死
Fear
2.88
0.92916
0.803786
0.9569
0.92593
4
user
你以为我想啊, 我还有好多愿望都没实现呢, 我还没去美国看篮球赛呢, 我还没考大学呢
Fear, Sad
8.199938
0.787369
0.667929
0.955335
0.612817
5
assistant
我还没有当上作家, 我的小说还没有出版, 我还没有赚钱去环游世界呢
Sad
6.999875
0.946462
0.742791
0.950377
0.971718
1
user
非得把咱家那钱, 往那没用的地方花是不是
Anger
2.559938
0.510388
0.475554
0.820825
0.533155
2
assistant
哎呀妈,这奥运会可是国家大事, 错过了这次, 谁知道下一次要等到什么时候啊
Neutral
6.240063
0.653091
0.685431
0.919599
0.64083
2
user
哎呀妈,这奥运会可是国家大事, 错过了这次, 谁知道下一次要等到什么时候啊
Neutral
6.240063
0.653091
0.685431
0.919599
0.64083
3
assistant
是啊, 那奥运会那是国家的大事, 这钱那是咱家的大事, 你告诉我, 你花出去了什么时候能攒回来,什么时候
Anger, Neutral
9.88
0.682201
0.723457
0.830799
0.726109
3
user
是啊, 那奥运会那是国家的大事, 这钱那是咱家的大事, 你告诉我, 你花出去了什么时候能攒回来,什么时候
Anger, Neutral
9.88
0.682201
0.723457
0.830799
0.726109
4
assistant
妈妈, 额娘,美少女
Happy
3.64
0.827295
0.654654
0.907747
0.652844
1
user
怎么又没水了
Anger
1.48
0.897493
0.661918
0.938165
0.968954
2
assistant
跟你说过多少次, 让你早点洗,早点洗, 咱们这儿楼层高, 到了八点钟它水压就小了
Anger, Neutral
6
0.879535
0.711471
0.960479
0.842133
2
user
跟你说过多少次, 让你早点洗,早点洗, 咱们这儿楼层高, 到了八点钟它水压就小了
Anger, Neutral
6
0.879535
0.711471
0.960479
0.842133
3
assistant
那我怎么办啊
Anger
1.44
0.925627
0.612818
0.935967
0.948086
4
user
你这么着, 你到你那个陈叔那儿去洗去吧
Neutral
2.56
0.671728
0.503553
0.869771
0.556682
5
assistant
陈奶奶家过生日, 他们都下酒店去了
Sad
2.8
0.885566
0.607549
0.919448
0.956454
1
user
你说这大哥也太厉害了, 特种兵退伍不说, 还是狙击手, 要不咱们再把这东西, 再放个五米远
Neutral
6.480063
0.30599
0.407081
0.989442
0.48976
2
assistant
你说怎么办吧! 五十块钱没挣回来, 东西都没了, 谈叔送我的签名版小说, 我的台灯, 宵宵送我的生日礼物, 你不是说不要本金的吗
Anger, Sad
9.84
0.936471
0.74476
0.901526
0.941125
3
user
那我怎么知道, 会遇见个狙击手呢
Sad
2.96
0.109735
0.269804
0.940218
0.483625
4
assistant
谈宋,你就是不靠谱
Anger
1.6
0.929647
0.669923
0.92885
0.961289
5
user
我把那五十块钱补给你还不行吗
Sad
2.679938
0.118426
0.316302
0.894108
0.483456
6
assistant
那,那剩下的东西怎么办啊
Sad
2.48
0.944532
0.722174
0.928788
1.027772
1
user
市里出了一个抢劫犯, 就穿我这一身, 就这个帽子,这个衣服, 你就不怕我下夜班直接进局子
Neutral, Disgust
6.52
0.530492
0.541401
0.909382
0.557172
2
assistant
就你还抢劫犯呢
Happy
1.64
0.758472
0.6641
0.93934
0.641299
1
user
我,第二
Neutral
1.84
0.070054
0.182945
0.887331
0.471316
2
assistant
不像话, 第一名肯定是我们谈宋嘛, 他怎么能跟你比, 绝对不可能
Anger
4.52
0.868862
0.711329
0.958969
0.876461
1
user
我为什么不能提你妈, 你妈是个什么好东西啊? 在你那么小的时候, 她就丢下你跑啦!
Anger
5.32
0.860457
0.629668
0.839927
0.807695
2
assistant
那因为你在外面乱搞
Anger
1.64
0.934665
0.678336
0.914992
0.961363
2
user
赶论文啊!
Sad
1.560063
0.348924
0.38555
0.928845
0.494827
3
assistant
我天哪! 你几天没洗头了?
Surprise
2.2
0.860685
0.663703
0.895582
0.80893
7
user
那第二件就有关系了, 今年实习生都放寒假
Happy
4.039938
0.17403
0.357388
0.828356
0.482709
8
assistant
不是吧! 真的假的?
Surprise
2.000063
1.017823
0.660109
0.884859
1.001022
1
user
你醒了?我的姑奶奶,你终于醒了, 起来,起来,快起来
Disgust
3.76
0.728299
0.564153
0.892485
0.584069
2
assistant
怎么是你呀? 你个臭流氓,你干什么呢你! 你把手放哪儿呢?
Anger
5.04
1.007489
0.703775
0.918319
1.001986
3
user
谁臭流氓,?你说谁是臭流氓啊
Anger
1.32
0.703631
0.535761
0.936046
0.584048
4
assistant
我说你是臭流氓啊! 你刚才手放哪儿了你?
Anger
1.76
0.940744
0.638725
0.889901
0.956098
4
user
我说你是臭流氓啊! 你刚才手放哪儿了你?
Anger
1.76
0.940744
0.638725
0.889901
0.956098
5
assistant
你醒了吧,,你酒醒了没有? 你天晚上喝断片了, 你不知道吗? 这是我朋友的店, 我们好心收留你, 要不然你就睡在大街上了
Anger
7.48
0.931319
0.746672
0.91864
0.953452
10
user
你,你刚才手放哪儿了? 你摸什么呢你?
Anger
2.480063
0.421954
0.43577
0.895604
0.492944
11
assistant
你刚刚睡着,你差点摔地上, 我好心救你, 你怎么反咬我一口呢?
Anger
4.04
0.843268
0.674381
0.972241
0.915712
11
user
你刚刚睡着,你差点摔地上, 我好心救你, 你怎么反咬我一口呢?
Anger
4.04
0.843268
0.674381
0.972241
0.915712
12
assistant
你怎么那么会编呢? 我在这儿差点摔下去, 你恰巧从这儿经过, 把我接着了是吗?
Anger
5.28
0.82275
0.657636
0.854138
0.688385
6
user
这孩子, 谁说出了国的孩子就不孝顺了呀
Sad
6
0.410039
0.377248
0.933864
0.511529
7
assistant
对嘛,他要真放心不下你, 可以带你一起去美国呀, 我们人多也热闹, 除非,你不想去
Anger, Neutral, Happy
9.52
0.827691
0.758421
0.882712
0.693661
8
user
只要孩子们好,我,怎么都行
Sad
4.840063
0.427311
0.449491
0.93163
0.507407
9
assistant
这就对了, 我们要将心比心哪, 你想啊, 珊珊等袁浩等了十年, 我这个做妈的, 只要一想到, 女儿这十年要是空等了, 我这心里头就像有把刀啊, 这么剐呀剐呀剐的
Sad
18.96
0.685058
0.781721
0.933149
0.668532
1
user
你原来不吧叽嘴啊!
Disgust
2.319938
0.417499
0.476782
0.9358
0.52341
2
assistant
这跟你有关系吗?
Anger
1.4
0.659137
0.516258
0.964341
0.659224
2
user
不是他们两个人感情, 要是好好的, 不是谁想插就能插得了的
Anger
3.720063
0.454639
0.529314
0.95235
0.542551
3
assistant
可你这刀不一样啊, 你这刀厉害啊, 你另有一功啊, 你一面诱惑着袁浩, 一面巴结着他爸爸, 现在好了,,我女儿走了, 你们两个人, 终于可以肆无忌弹地公开进出了, 在我眼里, 你就是个不折不扣的狐狸精, 破坏别人感情的第三者, 你太不要脸了, 你妈就是这样教你的!
Anger
21.32
0.768884
0.812366
0.927328
0.696446
3
user
可你这刀不一样啊, 你这刀厉害啊, 你另有一功啊, 你一面诱惑着袁浩, 一面巴结着他爸爸, 现在好了,,我女儿走了, 你们两个人, 终于可以肆无忌弹地公开进出了, 在我眼里, 你就是个不折不扣的狐狸精, 破坏别人感情的第三者, 你太不要脸了, 你妈就是这样教你的!
Anger
21.32
0.768884
0.812366
0.927328
0.696446
4
assistant
阿姨您别以为你年纪大了, 你就可以恶语伤人了, 我就是因为我男朋友劈腿了, 我才跟他分的手, 我这辈子最痛恨的就是第三者, 我知道这种感觉有多痛, 我到现在都没有缓过来, 我怎么可能去当一个, 破坏别人感情的第三者呢?
Anger
16.520063
0.690274
0.704499
0.859466
0.680082
4
user
阿姨您别以为你年纪大了, 你就可以恶语伤人了, 我就是因为我男朋友劈腿了, 我才跟他分的手, 我这辈子最痛恨的就是第三者, 我知道这种感觉有多痛, 我到现在都没有缓过来, 我怎么可能去当一个, 破坏别人感情的第三者呢?
Anger
16.520063
0.690274
0.704499
0.859466
0.680082
5
assistant
好,既然你信誓旦旦的, 我也愿意相信你, 只要你发个誓, 你永远不会跟袁浩在一起, 我就相信你
Anger
8.2
0.769097
0.726469
0.925745
0.758079
5
user
好,既然你信誓旦旦的, 我也愿意相信你, 只要你发个誓, 你永远不会跟袁浩在一起, 我就相信你
Anger
8.2
0.769097
0.726469
0.925745
0.758079
6
assistant
不是我真的不明白了, 袁浩跟珊珊感情有问题, 是他们之间的问题, 你为什么一定认为是我呢? 我问心无愧,为什么要发誓?
Anger
6.879938
0.870023
0.739556
0.911187
0.765523
6
user
不是我真的不明白了, 袁浩跟珊珊感情有问题, 是他们之间的问题, 你为什么一定认为是我呢? 我问心无愧,为什么要发誓?
Anger
6.879938
0.870023
0.739556
0.911187
0.765523
7
assistant
既然问心无愧,你为什么不敢发誓!
Anger
4.17775
0.833231
0.769301
0.922411
0.716214
3
user
这些照片不是合成的, 但也不是您想象的那样, 那天在公司的感恩会上, 茅小春把我的上司给惹怒了, 我去提醒她让她小心一点, 当然我也忘了, 为什么她会对我做出这样的举动, 但是阿姨请你相信我, 我绝对没有出轨, 更没有背叛
Neutral, Sad
15.92
0.43676
0.514607
0.885405
0.509899
4
assistant
好, 我愿意相信你, 你马上买机票跟我到美国, 我摄合你们, 我不相信你跟珊珊十年的感情, 这么说没就没了
Neutral, Sad
10.68
0.692044
0.70851
0.925107
0.726222
1
user
你懂不懂规矩呀, 你想约我男朋友, 跟我打声招呼有错吗?
Anger
3
0.768012
0.661372
0.810776
0.603537
2
assistant
你听不懂人话吗? 我跟你说没约就是没约, 滚出去!
Anger
3.559938
0.812931
0.663329
0.868399
0.647324
End of preview. Expand in Data Studio

ExpressiveSpeech Dataset

中文版说明 (Chinese Version)

About The Dataset

ExpressiveSpeech is a high-quality, expressive, and bilingual (Chinese-English) speech dataset created to address the common lack of consistent vocal expressiveness in existing dialogue datasets.

This dataset is meticulously curated from five renowned open-source emotional dialogue datasets: Expresso, NCSSD, M3ED, MultiDialog, and IEMOCAP. Through a rigorous processing and selection pipeline, ExpressiveSpeech ensures that every utterance meets high standards for both acoustic quality and expressive richness. It is designed for tasks in expressive Speech-to-Speech (S2S), Text-to-Speech (TTS), voice conversion, speech emotion recognition, and other fields requiring high-fidelity, emotionally resonant audio.

Key Features

  • High Expressiveness: Achieves a significantly high average expressiveness score of 80.2 by DeEAR, far surpassing the original source datasets.
  • Bilingual Content: Contains a balanced mix of Chinese and English speech, with a language ratio close to 1:1.
  • Substantial Scale: Comprises approximately 14,000 utterances, totaling 51 hours of audio.
  • Rich Metadata: Includes ASR-generated text transcriptions, expressiveness scores, and source information for each utterance.

Dataset Statistics

Metric Value
Total Utterances ~14,000
Total Duration ~51 hours
Languages Chinese, English
Language Ratio (CN:EN) Approx. 1:1
Sampling Rate 16kHz
Avg. Expressiveness Score (DeEAR) 80.2

Our Expressiveness Scoring Tool: DeEAR

The high expressiveness of this dataset was achieved using our screening tool, DeEAR. If you need to build larger batches of high-expressiveness data yourself, you are welcome to use this tool. You can find it on our GitHub.

Data Format

The dataset is organized as follows:

ExpressiveSpeech/
├── audio/
│   ├── M3ED
│   │    ├── audio_00001.wav
│   │    └── ...
│   ├── NCSSD
│   ├── IEMOCAP
│   ├── MultiDialog
│   └── Expresso
└── metadata.jsonl
  • metadata.jsonl: A jsonl file containing detailed information for each utterance. The metadata includes:
    • audio_path: The relative path to the audio file.
    • value: The ASR-generated text transcription.
    • emotion: Emotion labels from the original datasets.
    • expressiveness_scores: The expressiveness score from the DeEAR model.

JSONL Files Example

Each JSONL line contains a conversations field with an array of utterances.
Example:

{"conversations": [{"No": 9, "from": "user", "value": "Yeah.", "emotion": "happy", "length": 2.027, "score_arousal": 0.9931480884552002, "score_prosody": 0.6800634264945984, "score_nature": 0.9687601923942566, "score_expressive": 0.9892677664756775, "audio-path": "audios/Expresso/splitted_conversation/ex04-ex01/laughing/ex04-ex01_laughing_001/009_speaker1_53s_55s.wav"}, {"No": 10, "from": "assistant", "value": "What was the reason, what was the, why couldn't I get there, ah I forget.", "emotion": "happy", "length": 3.753, "score_arousal": 0.9555678963661194, "score_prosody": 0.6498672962188721, "score_nature": 1.030701756477356, "score_expressive": 0.9965837001800537, "audio-path": "audios/Expresso/splitted_conversation/ex04-ex01/laughing/ex04-ex01_laughing_001/010_speaker2_55s_59s.wav"}]}
{"conversations": [{"No": 10, "from": "user", "value": "What was the reason, what was the, why couldn't I get there, ah I forget.", "emotion": "happy", "length": 3.753, "score_arousal": 0.9555678963661194, "score_prosody": 0.6498672962188721, "score_nature": 1.030701756477356, "score_expressive": 0.9965837001800537, "audio-path": "audios/Expresso/splitted_conversation/ex04-ex01/laughing/ex04-ex01_laughing_001/010_speaker2_55s_59s.wav"}, {"No": 11, "from": "assistant", "value": "Because genie really had to go and and to the bathroom and she couldn't find a place to do it and so she when they put the tent on it it was it was a bad mess and they shouldn't have done that.", "emotion": "happy", "length": 10.649, "score_arousal": 0.976757287979126, "score_prosody": 0.7951533794403076, "score_nature": 0.9789049625396729, "score_expressive": 0.919080913066864, "audio-path": "audios/Expresso/splitted_conversation/ex04-ex01/laughing/ex04-ex01_laughing_001/011_speaker1_58s_69s.wav"}]}

Note: Some source datasets applied VAD, which could split a single utterance into multiple segments. To maintain conversational integrity, we applied rules to merge such segments back into complete utterances.

License

In line with the non-commercial restrictions of its source datasets, the ExpressiveSpeech dataset is released under the CC BY-NC-SA 4.0 license.

You can view the full license here.

Citation

If you use this dataset in your research, please cite our paper:


Downloads last month
563