microgen3D / README.md
BGLab's picture
Update README.md
10cf102 verified
---
pretty_name: MicroGen3D
tags:
- GenAI
- LDM
- 3d
- microstructure
- diffusion-model
- materials-science
- synthetic-data
- voxel
license: mit
datasets:
- microgen3D
language:
- en
---
# microgen3D
[![Code](https://img.shields.io/badge/GitHub-Code-black?logo=github)](https://github.com/baskargroup/MicroGen3D)
## Dataset Summary
**microgen3D** is a dataset of 3D voxelized microstructures designed for training, evaluation, and benchmarking of generative models—especially Conditional Latent Diffusion Models (LDMs). It includes both synthetic (Cahn-Hilliard) and experimental microstructures with multiple phases (2 to 3). The voxel grids range from `64³` up to `128×128×64`.
The dataset consists of three microstructure types:
- **Experimental microstructures**
- **2-phase Cahn-Hilliard microstructures**
- **3-phase Cahn-Hilliard microstructures**
The two Cahn-Hilliard datasets are thresholded versions of the same simulation source. For each dataset type, we also provide pretrained generative model weights, comprising:
- `vae.ckpt` – Variational Autoencoder
- `fp.ckpt` – Feature Predictor
- `ddpm.ckpt` – Denoising Diffusion Probabilistic Model
---
## 📁 Repository Structure
```
microgen3D/
├── data/
│ └── sample_data.h5 # Experimental or synthetic HDF5 microstructure file
├── models/
│ └── weights/
│ ├── experimental/
│ │ ├── vae.ckpt
│ │ ├── fp.ckpt
│ │ └── ddpm.ckpt
│ ├── two_phase/
│ └── three_phase/
└── ...
```
---
## 🚀 Quick Start
### 🔧 Setup Instructions
```bash
# 1. Clone the repo
git clone https://github.com/baskargroup/MicroGen3D.git
cd MicroGen3D
# 2. Set up environment
python -m venv venv
source venv/bin/activate # On Windows use: venv\Scripts\activate
# 3. Install dependencies
pip install -r requirements.txt
# 4. Download dataset and weights (Hugging Face)
# Make sure HF CLI is installed and you're logged in: `huggingface-cli login`
```
```python
from huggingface_hub import hf_hub_download
# Download sample data
hf_hub_download(repo_id="BGLab/microgen3D", filename="sample_data.h5", repo_type="dataset", local_dir="data")
# Download model weights
hf_hub_download(repo_id="BGLab/microgen3D", filename="vae.ckpt", local_dir="models/weights/experimental")
hf_hub_download(repo_id="BGLab/microgen3D", filename="fp.ckpt", local_dir="models/weights/experimental")
hf_hub_download(repo_id="BGLab/microgen3D", filename="ddpm.ckpt", local_dir="models/weights/experimental")
```
## ⚙️ Configuration
### Training Config (`config.yaml`)
- **task**: Auto-generated if left null
- **data_path**: Path to training dataset (`../data/sample_train.h5`)
- **model_dir**: Directory to save model weights
- **batch_size**: Batch size for training
- **image_shape**: Shape of the 3D images `[C, D, H, W]`
#### VAE Settings:
- `latent_dim_channels`: Latent space channels size.
- `kld_loss_weight`: Weight of KL divergence loss
- `max_epochs`: Training epochs
- `pretrained`: Whether to use pretrained VAE
- `pretrained_path`: Path to pretrained VAE model
#### FP Settings:
- `dropout`: Dropout rate
- `max_epochs`: Training epochs
- `pretrained`: Whether to use pretrained FP
- `pretrained_path`: Path to pretrained FP model
#### DDPM Settings:
- `timesteps`: Number of diffusion timesteps
- `n_feat`: Number of feature channels for Unet. Higher the channels more model capacity.
- `learning_rate`: Learning rate
- `max_epochs`: Training epochs
### Inference Parameters (`params.yaml`)
- **data_path**: Path to inference/test dataset (`../data/sample_test.h5`)
#### Training (for model init only):
- `batch_size`, `num_batches`, `num_timesteps`, `learning_rate`, `max_epochs` : Optional parameters
#### Model:
- `latent_dim_channels`: Latent space channels size.
- `n_feat`: Number of feature channels for Unet.
- `image_shape`: Expected image input shape
#### Attributes:
- List of features/targets to predict:
- `ABS_f_D`
- `CT_f_D_tort1`
- `CT_f_A_tort1`
#### Paths:
- `ddpm_path`: Path to trained DDPM model
- `vae_path`: Path to trained VAE model
- `fc_path`: Path to trained FP model
- `output_dir`: Where to store inference results
## 🏋️ Training
Navigate to the training folder and run:
```bash
cd training
python training.py
```
## 🧠 Inference
After training, switch to the inference folder and run:
```bash
cd ../inference
python inference.py
```
---
## 📜 Citation
If you use this dataset or models, please cite:
```
@article{baishnab2025microgen3d,
title={3D Multiphase Heterogeneous Microstructure Generation Using Conditional Latent Diffusion Models},
author={Baishnab, Nirmal and Herron, Ethan and Balu, Aditya and Sarkar, Soumik and Krishnamurthy, Adarsh and Ganapathysubramanian, Baskar},
journal={arXiv preprint arXiv:2503.10711},
year={2025}
}
```
---
## ⚖️ License
This project is licensed under the **MIT License**.
---