Text Generation
Transformers
Safetensors
MLX
qwen2
conversational
text-generation-inference
4-bit precision
cnfusion's picture
Upload README.md with huggingface_hub
abbe5cd verified
metadata
license: mit
library_name: transformers
datasets:
  - FractalAIResearch/Fathom-V0.4-SFT-Shortest-Chains
  - FractalAIResearch/Fathom-V0.6-Iterative-Curriculum-Learning
base_model: FractalAIResearch/Fathom-R1-14B
tags:
  - mlx

cnfusion/Fathom-R1-14B-mlx-4Bit

The Model cnfusion/Fathom-R1-14B-mlx-4Bit was converted to MLX format from FractalAIResearch/Fathom-R1-14B using mlx-lm version 0.22.3.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("cnfusion/Fathom-R1-14B-mlx-4Bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)