cyberbtoxic-distilbert
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3306
- Accuracy: 0.8695
- Precision: 0.8501
- Recall: 0.8971
- F1: 0.8730
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2846 | 1.0 | 4024 | 0.3352 | 0.8556 | 0.8382 | 0.8812 | 0.8592 |
0.3027 | 2.0 | 8048 | 0.3306 | 0.8695 | 0.8501 | 0.8971 | 0.8730 |
0.2062 | 3.0 | 12072 | 0.4010 | 0.8650 | 0.8609 | 0.8707 | 0.8658 |
0.1604 | 4.0 | 16096 | 0.5293 | 0.8643 | 0.8547 | 0.8777 | 0.8660 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 15
Model tree for cike-dev/cyberbtoxic-distilbert
Base model
distilbert/distilbert-base-uncased