Triton Kernel Code Generation Model

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct specialized for generating Triton GPU kernels.

Model Details

  • Base Model: Qwen/Qwen2.5-1.5B-Instruct
  • Fine-tuned on: 6000 examples of Triton kernel code
  • Eval Loss: 0.20
  • Eval Perplexity: 1.22

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("cdreetz/kwen2.5-1.5b")
tokenizer = AutoTokenizer.from_pretrained("cdreetz/kwen2.5-1.5b")

prompt = "Write a Triton kernel for element-wise addition:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Training Details

  • Epochs: 2
  • Batch Size: 2
  • Learning Rate: 1e-5
  • Dataset Size: 6000 examples

Performance

The model generates syntactically correct Triton kernels with proper:

  • @triton.jit decorators
  • Kernel function signatures
  • Launch function implementations
  • Memory access patterns
  • Grid configurations

Limitations

  • Specialized for Triton kernel generation only
  • May require prompt engineering for optimal results
  • Generated kernels should be tested before production use
Downloads last month
3
Safetensors
Model size
1.54B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cdreetz/kwen2.5-1.5b

Base model

Qwen/Qwen2.5-1.5B
Finetuned
(1199)
this model