Qianfan-VL: Domain-Enhanced Universal Vision-Language Models
Domain Capability Enhancement through Continuous Pre-training | 3B to 70B Parameter Scale | Document Understanding & OCR Enhancement | Chain-of-Thought Reasoning Support
🔗 Quick Links
- Repository: 💻 GitHub
- Models: 🤗 Hugging Face | 🤖 ModelScope
- Documentation: 📚 Cookbook | 📝 Technical Report
- Blogs: 🇨🇳 中文博客 | 🇬🇧 English Blog
Model Description
Qianfan-VL is a series of general-purpose multimodal large language models enhanced for enterprise-level multimodal applications. The models offer deep optimization for high-frequency scenarios in industrial deployment while maintaining strong general capabilities.
Model Variants
Model | Parameters | Context Length | CoT Support | Best For |
---|---|---|---|---|
Qianfan-VL-3B | 3B | 32k | ❌ | Edge deployment, real-time OCR |
Qianfan-VL-8B | 8B | 32k | ✅ | Server-side general scenarios, fine-tuning |
Qianfan-VL-70B | 70B | 32k | ✅ | Complex reasoning, data synthesis |
Architecture
- Language Model:
- Qianfan-VL-3B: Based on Qwen2.5-3B
- Qianfan-VL-8B/70B: Based on Llama 3.1 architecture
- Enhanced with 3T multilingual corpus
- Vision Encoder: InternViT-based, supports dynamic patching up to 4K resolution
- Cross-modal Fusion: MLP adapter for efficient vision-language bridging
Key Capabilities
🔍 OCR & Document Understanding
- Full-Scenario OCR: Handwriting, formulas, natural scenes, cards/documents
- Document Intelligence: Layout analysis, table parsing, chart understanding, document Q&A
- High Precision: Industry-leading performance on OCR benchmarks
🧮 Chain-of-Thought Reasoning (8B & 70B)
- Complex chart analysis and reasoning
- Mathematical problem-solving with step-by-step derivation
- Visual reasoning and logical inference
- Statistical computation and trend prediction
📊 Benchmark Performance
General Vision-Language Benchmarks
Benchmark | Qianfan-VL-3B | Qianfan-VL-8B | Qianfan-VL-70B | InternVL-3-8B | InternVL-3-78B | Qwen2.5-VL-7B | Qwen2.5-VL-72B |
---|---|---|---|---|---|---|---|
A-Bench_VAL | 75.65 | 75.72 | 78.1 | 75.86 | 75.86 | 76.49 | 79.22 |
CCBench | 66.86 | 70.39 | 80.98 | 77.84 | 70.78 | 57.65 | 73.73 |
SEEDBench_IMG | 76.55 | 78.02 | 79.13 | 77.0 | 77.52 | 76.98 | 78.34 |
SEEDBench2_Plus | 67.59 | 70.97 | 73.17 | 69.52 | 68.47 | 70.93 | 73.25 |
MMVet | 48.17 | 53.21 | 67.34 | 80.28 | 78.9 | 70.64 | 75.69 |
MMMU_VAL | 46.44 | 47.11 | 58.33 | 56.11 | 60.78 | 51.0 | 65.78 |
ScienceQA_TEST | 95.19 | 97.62 | 98.76 | 97.97 | 97.17 | 85.47 | 92.51 |
ScienceQA_VAL | 93.85 | 97.62 | 98.81 | 97.81 | 95.14 | 83.59 | 91.32 |
MMT-Bench_VAL | 62.23 | 63.22 | 71.06 | 65.17 | 63.67 | 61.4 | 69.49 |
MTVQA_TEST | 26.5 | 30.14 | 32.18 | 30.3 | 27.62 | 29.08 | 31.48 |
BLINK | 49.97 | 56.81 | 59.44 | 55.87 | 51.87 | 54.55 | 63.02 |
MMStar | 57.93 | 64.07 | 69.47 | 68.4 | 66.07 | 61.53 | 66.0 |
RealWorldQA | 65.75 | 70.59 | 71.63 | 71.11 | 74.25 | 69.28 | 73.86 |
Q-Bench1_VAL | 73.51 | 75.25 | 77.46 | 75.99 | 77.99 | 78.1 | 79.93 |
POPE | 85.08 | 86.06 | 88.97 | 90.59 | 88.87 | 85.97 | 83.35 |
RefCOCO (Avg) | 85.94 | 89.37 | 91.01 | 89.65 | 91.40 | 86.56 | 90.25 |
OCR & Document Understanding
Benchmark | Qianfan-VL-3B | Qianfan-VL-8B | Qianfan-VL-70B | InternVL-3-8B | InternVL-3-78B | Qwen2.5-VL-3B | Qwen2.5-VL-7B | Qwen2.5-VL-72B |
---|---|---|---|---|---|---|---|---|
OCRBench | 831 | 854 | 873 | 881 | 847 | 810 | 883 | 874 |
AI2D_TEST | 81.38 | 85.07 | 87.23 | 85.07 | 83.55 | 77.07 | 80.472 | 83.84 |
OCRVQA_TEST | 66.15 | 68.98 | 74.06 | 39.03 | 35.58 | 69.24 | 71.02 | 66.8 |
TextVQA_VAL | 80.11 | 82.13 | 84.48 | 82.15 | 83.52 | 79.09 | 84.962 | 83.26 |
DocVQA_VAL | 90.85 | 93.54 | 94.75 | 92.04 | 83.82 | 92.71 | 94.91 | 95.75 |
ChartQA_TEST | 81.79 | 87.72 | 89.6 | 85.76 | 82.04 | 83.4 | 86.68 | 87.16 |
Mathematical Reasoning
Benchmark | Qianfan-VL-8B | Qianfan-VL-70B | InternVL-3-8B | InternVL-3-78B | Qwen2.5-VL-7B | Qwen2.5-VL-72B |
---|---|---|---|---|---|---|
Mathvista-mini | 69.19 | 78.6 | 69.5 | 70.1 | 67.2 | 73.9 |
Mathvision | 32.82 | 50.29 | 29.61 | 34.8 | 25.95 | 39.34 |
Mathverse | 48.4 | 61.04 | 43.68 | 49.26 | 44.21 | 55.18 |
ChartQA Pro | 50.43 | 52 | 37.32 | 44.43 | 43.73 | 45.3 |
HallusionBench | 51.72 | 54.52 | 49.2 | 40.2 | 47.9 | 49.9 |
InHouse Dataset A | 59.87 | 71.78 | 40.64 | 41.47 | 45.58 | 57.2 |
InHouse Dataset B | 61.33 | 75.6 | 36.25 | 42.65 | 30.62 | 59.68 |
Quick Start
Installation
pip install transformers accelerate torch torchvision pillow einops
Using Transformers
import torch
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from PIL import Image
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# Load model
MODEL_PATH = "baidu/Qianfan-VL-8B" # or Qianfan-VL-3B, Qianfan-VL-70B
model = AutoModel.from_pretrained(
MODEL_PATH,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
).eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
# Load and process image
pixel_values = load_image("./example/scene_ocr.png").to(torch.bfloat16)
# Inference
prompt = "<image>请识别图中所有文字"
with torch.no_grad():
response = model.chat(
tokenizer,
pixel_values=pixel_values,
question=prompt,
generation_config={"max_new_tokens": 512},
verbose=False
)
print(response)
Using vLLM
You can deploy Qianfan-VL using vLLM's official Docker image for high-performance inference with an OpenAI-compatible API:
Start vLLM Service
docker run -d --name qianfan-vl \
--gpus all \
-v /path/to/Qianfan-VL-8B:/model \
-p 8000:8000 \
--ipc=host \
vllm/vllm-openai:latest \
--model /model \
--served-model-name qianfan-vl \
--trust-remote-code \
--hf-overrides '{"architectures":["InternVLChatModel"],"model_type":"internvl_chat"}'
Call the API
curl 'http://127.0.0.1:8000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "qianfan-vl",
"messages": [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://qianfan-public-demo.bj.bcebos.com/qianfan-vl/2509/images/scene_ocr.png"
}
},
{
"type": "text",
"text": "<image>请识别图中所有文字"
}
]
}
]
}'
Or use Python with OpenAI SDK:
from openai import OpenAI
client = OpenAI(
api_key="EMPTY",
base_url="http://127.0.0.1:8000/v1"
)
response = client.chat.completions.create(
model="qianfan-vl",
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": "https://qianfan-public-demo.bj.bcebos.com/qianfan-vl/2509/images/scene_ocr.png"}
},
{
"type": "text",
"text": "<image>请描述这张图片"
}
]
}
],
max_tokens=512
)
print(response.choices[0].message.content)
Training Details
Four-Stage Progressive Training
- Cross-modal Alignment (100B tokens): Establishes vision-language connections
- General Knowledge Injection (3.5T tokens): Builds strong foundational capabilities
- Domain Enhancement (300B tokens): Specialized OCR and reasoning capabilities
- Post-training (1B tokens): Instruction following and preference alignment
Infrastructure
- Trained on 5000+ Baidu Kunlun chips
- Single-task parallel training with 5000 chips demonstrating unprecedented scale
- 90%+ scaling efficiency for large-scale distributed training
- Innovative communication-computation fusion technology
Model Card
- Developed by: Baidu AI Cloud Qianfan Team
- Model type: Vision-Language Transformer
- Languages: Multilingual support
- License: [Please check model card for specific license]
- Base Architecture: Please Reference Technical Report
Citation
If you use Qianfan-VL in your research, please cite:
@misc{qianfan-vl-2025,
title={Qianfan-VL: Domain-Enhanced Universal Vision-Language Models},
author={Qianfan Team},
year={2025},
publisher={Baidu}
}
Contact
For more information and API access, visit: Baidu Qianfan Platform
Acknowledgments
This model series represents a significant advancement in multimodal AI, combining general capabilities with domain-specific enhancements for real-world applications.
- Downloads last month
- 727