Low-resource Vocabulary Expansion
Collection
Collection of models for "How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?"
•
266 items
•
Updated
This model is built on top of Gemma2 9B adapted for Burmese using 30K target language sentences sampled from CC-100.
Use the code below to get started with the model.
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"atsuki-yamaguchi/gemma-2-9b-my-30K-5000-rand"
)
tokenizer = AutoTokenizer.from_pretrained(
"atsuki-yamaguchi/gemma-2-9b-my-30K-5000-rand"
)
@article{yamaguchi-etal-2024-effectively,
title={How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?},
author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras},
year={2024},
journal={ArXiv},
year={2024},
volume={abs/2406.11477},
url={https://arxiv.org/abs/2406.11477},
}
Base model
google/gemma-2-9b