xlm-roberta-large-dataset-inicial-ner-clinical-mama-sp
This model is a fine-tuned version of FacebookAI/xlm-roberta-large-finetuned-conll03-english on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0556
- Precision: 0.9380
- Recall: 0.9368
- F1: 0.9374
- Accuracy: 0.9798
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.1743 | 0.9974 | 189 | 1.6872 | 0.2341 | 0.1523 | 0.1845 | 0.6123 |
0.4383 | 1.9974 | 378 | 1.0670 | 0.3716 | 0.3677 | 0.3696 | 0.7270 |
0.2162 | 2.9974 | 567 | 0.8029 | 0.5604 | 0.4606 | 0.5057 | 0.8 |
0.1519 | 3.9974 | 756 | 0.6657 | 0.5594 | 0.48 | 0.5167 | 0.8152 |
0.1212 | 4.9974 | 945 | 0.5515 | 0.6325 | 0.5174 | 0.5692 | 0.8578 |
0.0733 | 5.9974 | 1134 | 0.4086 | 0.7512 | 0.6310 | 0.6858 | 0.9011 |
0.0601 | 6.9974 | 1323 | 0.3607 | 0.7289 | 0.6142 | 0.6667 | 0.9055 |
0.0689 | 7.9974 | 1512 | 0.2361 | 0.8009 | 0.7213 | 0.7590 | 0.9292 |
0.06 | 8.9974 | 1701 | 0.1869 | 0.8191 | 0.7652 | 0.7912 | 0.9390 |
0.0518 | 9.9974 | 1890 | 0.1797 | 0.8263 | 0.7858 | 0.8056 | 0.9431 |
0.0449 | 10.9974 | 2079 | 0.1440 | 0.8651 | 0.8194 | 0.8416 | 0.9542 |
0.0356 | 11.9974 | 2268 | 0.1273 | 0.876 | 0.8477 | 0.8616 | 0.9592 |
0.0358 | 12.9974 | 2457 | 0.1100 | 0.8832 | 0.8490 | 0.8658 | 0.9633 |
0.0272 | 13.9974 | 2646 | 0.0821 | 0.9170 | 0.9123 | 0.9146 | 0.9719 |
0.026 | 14.9974 | 2835 | 0.0709 | 0.9258 | 0.9174 | 0.9216 | 0.9750 |
0.0258 | 15.9974 | 3024 | 0.0605 | 0.9326 | 0.9277 | 0.9301 | 0.9776 |
0.0206 | 16.9974 | 3213 | 0.0573 | 0.9315 | 0.9303 | 0.9309 | 0.9782 |
0.0183 | 17.9974 | 3402 | 0.0556 | 0.9380 | 0.9368 | 0.9374 | 0.9798 |
0.0205 | 18.9974 | 3591 | 0.0549 | 0.9379 | 0.9355 | 0.9367 | 0.9795 |
0.0193 | 19.9974 | 3780 | 0.0550 | 0.9379 | 0.9355 | 0.9367 | 0.9795 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 30
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support