yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8102
  • Map: 0.5786
  • Map 50: 0.8446
  • Map 75: 0.6382
  • Map Small: -1.0
  • Map Medium: 0.4455
  • Map Large: 0.612
  • Mar 1: 0.4135
  • Mar 10: 0.7102
  • Mar 100: 0.7772
  • Mar Small: -1.0
  • Mar Medium: 0.6929
  • Mar Large: 0.7901
  • Map Banana: 0.4687
  • Mar 100 Banana: 0.7725
  • Map Orange: 0.5847
  • Mar 100 Orange: 0.7762
  • Map Apple: 0.6823
  • Mar 100 Apple: 0.7829

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 1.8136 0.0276 0.0676 0.0239 -1.0 0.0078 0.0342 0.1148 0.2754 0.4185 -1.0 0.1714 0.4507 0.0408 0.485 0.0068 0.219 0.0351 0.5514
No log 2.0 120 1.7054 0.0355 0.1015 0.0111 -1.0 0.0269 0.0406 0.1291 0.2748 0.4096 -1.0 0.1786 0.4367 0.0311 0.515 0.0219 0.1595 0.0534 0.5543
No log 3.0 180 1.5536 0.0842 0.2199 0.0402 -1.0 0.0885 0.0896 0.1298 0.3777 0.523 -1.0 0.3643 0.546 0.0866 0.53 0.034 0.419 0.1319 0.62
No log 4.0 240 1.4179 0.1237 0.2493 0.1158 -1.0 0.1427 0.1403 0.202 0.435 0.584 -1.0 0.3786 0.6187 0.0677 0.5325 0.0733 0.5595 0.23 0.66
No log 5.0 300 1.3259 0.1914 0.3715 0.2017 -1.0 0.2276 0.1995 0.2675 0.4743 0.6013 -1.0 0.4214 0.6252 0.177 0.625 0.0701 0.4905 0.327 0.6886
No log 6.0 360 1.0490 0.3739 0.6071 0.4122 -1.0 0.275 0.4005 0.336 0.5812 0.6887 -1.0 0.5429 0.7081 0.2977 0.71 0.2726 0.6476 0.5513 0.7086
No log 7.0 420 1.0736 0.3657 0.6161 0.3907 -1.0 0.2635 0.3944 0.3273 0.5884 0.6913 -1.0 0.5071 0.7181 0.3167 0.695 0.2788 0.6619 0.5016 0.7171
No log 8.0 480 0.9415 0.4225 0.6716 0.4667 -1.0 0.3595 0.4549 0.3638 0.6513 0.7315 -1.0 0.6 0.7511 0.3356 0.7275 0.3724 0.7071 0.5596 0.76
1.3315 9.0 540 0.9699 0.4167 0.6212 0.4558 -1.0 0.3041 0.4531 0.3476 0.6281 0.7165 -1.0 0.5643 0.7385 0.3003 0.7175 0.3749 0.6976 0.5748 0.7343
1.3315 10.0 600 0.8980 0.4691 0.7169 0.5306 -1.0 0.3259 0.5058 0.3978 0.6631 0.7525 -1.0 0.6143 0.7731 0.3827 0.75 0.4542 0.7476 0.5705 0.76
1.3315 11.0 660 0.9776 0.4783 0.754 0.5379 -1.0 0.4189 0.5088 0.374 0.6489 0.7203 -1.0 0.6214 0.7373 0.3366 0.6975 0.4635 0.7119 0.6349 0.7514
1.3315 12.0 720 0.8537 0.4906 0.7546 0.5085 -1.0 0.3892 0.5281 0.3992 0.6637 0.7245 -1.0 0.5857 0.7456 0.3839 0.7225 0.4721 0.7167 0.6156 0.7343
1.3315 13.0 780 0.9508 0.489 0.771 0.5165 -1.0 0.3708 0.5242 0.3734 0.6578 0.7048 -1.0 0.5929 0.7231 0.3675 0.685 0.4847 0.7095 0.6147 0.72
1.3315 14.0 840 0.8707 0.5262 0.7754 0.5673 -1.0 0.4439 0.5601 0.3959 0.6783 0.7392 -1.0 0.6 0.7611 0.368 0.7275 0.5316 0.7214 0.6791 0.7686
1.3315 15.0 900 0.8676 0.524 0.7861 0.5509 -1.0 0.4334 0.5609 0.4157 0.6822 0.749 -1.0 0.6 0.7727 0.3959 0.7275 0.5311 0.7452 0.645 0.7743
1.3315 16.0 960 0.9307 0.5249 0.7949 0.5998 -1.0 0.5273 0.5483 0.4047 0.6706 0.7418 -1.0 0.7071 0.7476 0.3963 0.735 0.5469 0.7333 0.6314 0.7571
0.7366 17.0 1020 0.8927 0.5187 0.793 0.5634 -1.0 0.4054 0.5501 0.3921 0.6667 0.7375 -1.0 0.6357 0.7536 0.4097 0.725 0.5392 0.7476 0.6072 0.74
0.7366 18.0 1080 0.8342 0.5357 0.7734 0.5966 -1.0 0.4446 0.5642 0.4124 0.6984 0.7625 -1.0 0.6714 0.7765 0.4547 0.7575 0.5612 0.75 0.5913 0.78
0.7366 19.0 1140 0.8859 0.5298 0.7831 0.6049 -1.0 0.4868 0.5533 0.3974 0.6796 0.7596 -1.0 0.6929 0.7696 0.4249 0.7525 0.5349 0.7548 0.6295 0.7714
0.7366 20.0 1200 0.8419 0.541 0.7804 0.5784 -1.0 0.4396 0.5744 0.4146 0.7049 0.7669 -1.0 0.6786 0.7806 0.4128 0.7575 0.5499 0.7548 0.6602 0.7886
0.7366 21.0 1260 0.8121 0.5488 0.7972 0.5883 -1.0 0.4726 0.5808 0.4075 0.699 0.7654 -1.0 0.6429 0.7848 0.4376 0.75 0.5657 0.769 0.6431 0.7771
0.7366 22.0 1320 0.8244 0.5589 0.8228 0.5913 -1.0 0.4307 0.5956 0.4169 0.7031 0.7676 -1.0 0.65 0.7863 0.4263 0.7575 0.5662 0.7452 0.6844 0.8
0.7366 23.0 1380 0.8141 0.5664 0.8274 0.6123 -1.0 0.4366 0.6011 0.4235 0.7096 0.769 -1.0 0.6214 0.7913 0.4468 0.7675 0.5822 0.7595 0.6703 0.78
0.7366 24.0 1440 0.8117 0.5718 0.8355 0.6327 -1.0 0.4978 0.6039 0.42 0.7097 0.7812 -1.0 0.6571 0.7995 0.4668 0.785 0.5808 0.7643 0.6679 0.7943
0.5789 25.0 1500 0.8244 0.5733 0.8285 0.6347 -1.0 0.4932 0.6049 0.4133 0.706 0.7808 -1.0 0.6929 0.7943 0.4656 0.78 0.5824 0.7881 0.6719 0.7743
0.5789 26.0 1560 0.8051 0.5774 0.8352 0.6323 -1.0 0.4713 0.6104 0.4144 0.7068 0.7754 -1.0 0.6857 0.7892 0.4718 0.7725 0.5806 0.7738 0.6799 0.78
0.5789 27.0 1620 0.8131 0.5772 0.8438 0.6347 -1.0 0.4599 0.6098 0.4125 0.7069 0.7747 -1.0 0.6857 0.7887 0.468 0.7675 0.5868 0.7738 0.6769 0.7829
0.5789 28.0 1680 0.8100 0.5787 0.845 0.6392 -1.0 0.4471 0.6121 0.4134 0.7085 0.7741 -1.0 0.6857 0.7877 0.4728 0.7675 0.5839 0.769 0.6793 0.7857
0.5789 29.0 1740 0.8104 0.5786 0.8441 0.6391 -1.0 0.4455 0.6123 0.4135 0.7094 0.7747 -1.0 0.6929 0.7875 0.4699 0.7675 0.5845 0.7738 0.6814 0.7829
0.5789 30.0 1800 0.8102 0.5786 0.8446 0.6382 -1.0 0.4455 0.612 0.4135 0.7102 0.7772 -1.0 0.6929 0.7901 0.4687 0.7725 0.5847 0.7762 0.6823 0.7829

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
10
Safetensors
Model size
6.47M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for aiarenm/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(42)
this model