yolo_finetuned_fruits
This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8102
- Map: 0.5786
- Map 50: 0.8446
- Map 75: 0.6382
- Map Small: -1.0
- Map Medium: 0.4455
- Map Large: 0.612
- Mar 1: 0.4135
- Mar 10: 0.7102
- Mar 100: 0.7772
- Mar Small: -1.0
- Mar Medium: 0.6929
- Mar Large: 0.7901
- Map Banana: 0.4687
- Mar 100 Banana: 0.7725
- Map Orange: 0.5847
- Mar 100 Orange: 0.7762
- Map Apple: 0.6823
- Mar 100 Apple: 0.7829
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Banana | Mar 100 Banana | Map Orange | Mar 100 Orange | Map Apple | Mar 100 Apple |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 60 | 1.8136 | 0.0276 | 0.0676 | 0.0239 | -1.0 | 0.0078 | 0.0342 | 0.1148 | 0.2754 | 0.4185 | -1.0 | 0.1714 | 0.4507 | 0.0408 | 0.485 | 0.0068 | 0.219 | 0.0351 | 0.5514 |
No log | 2.0 | 120 | 1.7054 | 0.0355 | 0.1015 | 0.0111 | -1.0 | 0.0269 | 0.0406 | 0.1291 | 0.2748 | 0.4096 | -1.0 | 0.1786 | 0.4367 | 0.0311 | 0.515 | 0.0219 | 0.1595 | 0.0534 | 0.5543 |
No log | 3.0 | 180 | 1.5536 | 0.0842 | 0.2199 | 0.0402 | -1.0 | 0.0885 | 0.0896 | 0.1298 | 0.3777 | 0.523 | -1.0 | 0.3643 | 0.546 | 0.0866 | 0.53 | 0.034 | 0.419 | 0.1319 | 0.62 |
No log | 4.0 | 240 | 1.4179 | 0.1237 | 0.2493 | 0.1158 | -1.0 | 0.1427 | 0.1403 | 0.202 | 0.435 | 0.584 | -1.0 | 0.3786 | 0.6187 | 0.0677 | 0.5325 | 0.0733 | 0.5595 | 0.23 | 0.66 |
No log | 5.0 | 300 | 1.3259 | 0.1914 | 0.3715 | 0.2017 | -1.0 | 0.2276 | 0.1995 | 0.2675 | 0.4743 | 0.6013 | -1.0 | 0.4214 | 0.6252 | 0.177 | 0.625 | 0.0701 | 0.4905 | 0.327 | 0.6886 |
No log | 6.0 | 360 | 1.0490 | 0.3739 | 0.6071 | 0.4122 | -1.0 | 0.275 | 0.4005 | 0.336 | 0.5812 | 0.6887 | -1.0 | 0.5429 | 0.7081 | 0.2977 | 0.71 | 0.2726 | 0.6476 | 0.5513 | 0.7086 |
No log | 7.0 | 420 | 1.0736 | 0.3657 | 0.6161 | 0.3907 | -1.0 | 0.2635 | 0.3944 | 0.3273 | 0.5884 | 0.6913 | -1.0 | 0.5071 | 0.7181 | 0.3167 | 0.695 | 0.2788 | 0.6619 | 0.5016 | 0.7171 |
No log | 8.0 | 480 | 0.9415 | 0.4225 | 0.6716 | 0.4667 | -1.0 | 0.3595 | 0.4549 | 0.3638 | 0.6513 | 0.7315 | -1.0 | 0.6 | 0.7511 | 0.3356 | 0.7275 | 0.3724 | 0.7071 | 0.5596 | 0.76 |
1.3315 | 9.0 | 540 | 0.9699 | 0.4167 | 0.6212 | 0.4558 | -1.0 | 0.3041 | 0.4531 | 0.3476 | 0.6281 | 0.7165 | -1.0 | 0.5643 | 0.7385 | 0.3003 | 0.7175 | 0.3749 | 0.6976 | 0.5748 | 0.7343 |
1.3315 | 10.0 | 600 | 0.8980 | 0.4691 | 0.7169 | 0.5306 | -1.0 | 0.3259 | 0.5058 | 0.3978 | 0.6631 | 0.7525 | -1.0 | 0.6143 | 0.7731 | 0.3827 | 0.75 | 0.4542 | 0.7476 | 0.5705 | 0.76 |
1.3315 | 11.0 | 660 | 0.9776 | 0.4783 | 0.754 | 0.5379 | -1.0 | 0.4189 | 0.5088 | 0.374 | 0.6489 | 0.7203 | -1.0 | 0.6214 | 0.7373 | 0.3366 | 0.6975 | 0.4635 | 0.7119 | 0.6349 | 0.7514 |
1.3315 | 12.0 | 720 | 0.8537 | 0.4906 | 0.7546 | 0.5085 | -1.0 | 0.3892 | 0.5281 | 0.3992 | 0.6637 | 0.7245 | -1.0 | 0.5857 | 0.7456 | 0.3839 | 0.7225 | 0.4721 | 0.7167 | 0.6156 | 0.7343 |
1.3315 | 13.0 | 780 | 0.9508 | 0.489 | 0.771 | 0.5165 | -1.0 | 0.3708 | 0.5242 | 0.3734 | 0.6578 | 0.7048 | -1.0 | 0.5929 | 0.7231 | 0.3675 | 0.685 | 0.4847 | 0.7095 | 0.6147 | 0.72 |
1.3315 | 14.0 | 840 | 0.8707 | 0.5262 | 0.7754 | 0.5673 | -1.0 | 0.4439 | 0.5601 | 0.3959 | 0.6783 | 0.7392 | -1.0 | 0.6 | 0.7611 | 0.368 | 0.7275 | 0.5316 | 0.7214 | 0.6791 | 0.7686 |
1.3315 | 15.0 | 900 | 0.8676 | 0.524 | 0.7861 | 0.5509 | -1.0 | 0.4334 | 0.5609 | 0.4157 | 0.6822 | 0.749 | -1.0 | 0.6 | 0.7727 | 0.3959 | 0.7275 | 0.5311 | 0.7452 | 0.645 | 0.7743 |
1.3315 | 16.0 | 960 | 0.9307 | 0.5249 | 0.7949 | 0.5998 | -1.0 | 0.5273 | 0.5483 | 0.4047 | 0.6706 | 0.7418 | -1.0 | 0.7071 | 0.7476 | 0.3963 | 0.735 | 0.5469 | 0.7333 | 0.6314 | 0.7571 |
0.7366 | 17.0 | 1020 | 0.8927 | 0.5187 | 0.793 | 0.5634 | -1.0 | 0.4054 | 0.5501 | 0.3921 | 0.6667 | 0.7375 | -1.0 | 0.6357 | 0.7536 | 0.4097 | 0.725 | 0.5392 | 0.7476 | 0.6072 | 0.74 |
0.7366 | 18.0 | 1080 | 0.8342 | 0.5357 | 0.7734 | 0.5966 | -1.0 | 0.4446 | 0.5642 | 0.4124 | 0.6984 | 0.7625 | -1.0 | 0.6714 | 0.7765 | 0.4547 | 0.7575 | 0.5612 | 0.75 | 0.5913 | 0.78 |
0.7366 | 19.0 | 1140 | 0.8859 | 0.5298 | 0.7831 | 0.6049 | -1.0 | 0.4868 | 0.5533 | 0.3974 | 0.6796 | 0.7596 | -1.0 | 0.6929 | 0.7696 | 0.4249 | 0.7525 | 0.5349 | 0.7548 | 0.6295 | 0.7714 |
0.7366 | 20.0 | 1200 | 0.8419 | 0.541 | 0.7804 | 0.5784 | -1.0 | 0.4396 | 0.5744 | 0.4146 | 0.7049 | 0.7669 | -1.0 | 0.6786 | 0.7806 | 0.4128 | 0.7575 | 0.5499 | 0.7548 | 0.6602 | 0.7886 |
0.7366 | 21.0 | 1260 | 0.8121 | 0.5488 | 0.7972 | 0.5883 | -1.0 | 0.4726 | 0.5808 | 0.4075 | 0.699 | 0.7654 | -1.0 | 0.6429 | 0.7848 | 0.4376 | 0.75 | 0.5657 | 0.769 | 0.6431 | 0.7771 |
0.7366 | 22.0 | 1320 | 0.8244 | 0.5589 | 0.8228 | 0.5913 | -1.0 | 0.4307 | 0.5956 | 0.4169 | 0.7031 | 0.7676 | -1.0 | 0.65 | 0.7863 | 0.4263 | 0.7575 | 0.5662 | 0.7452 | 0.6844 | 0.8 |
0.7366 | 23.0 | 1380 | 0.8141 | 0.5664 | 0.8274 | 0.6123 | -1.0 | 0.4366 | 0.6011 | 0.4235 | 0.7096 | 0.769 | -1.0 | 0.6214 | 0.7913 | 0.4468 | 0.7675 | 0.5822 | 0.7595 | 0.6703 | 0.78 |
0.7366 | 24.0 | 1440 | 0.8117 | 0.5718 | 0.8355 | 0.6327 | -1.0 | 0.4978 | 0.6039 | 0.42 | 0.7097 | 0.7812 | -1.0 | 0.6571 | 0.7995 | 0.4668 | 0.785 | 0.5808 | 0.7643 | 0.6679 | 0.7943 |
0.5789 | 25.0 | 1500 | 0.8244 | 0.5733 | 0.8285 | 0.6347 | -1.0 | 0.4932 | 0.6049 | 0.4133 | 0.706 | 0.7808 | -1.0 | 0.6929 | 0.7943 | 0.4656 | 0.78 | 0.5824 | 0.7881 | 0.6719 | 0.7743 |
0.5789 | 26.0 | 1560 | 0.8051 | 0.5774 | 0.8352 | 0.6323 | -1.0 | 0.4713 | 0.6104 | 0.4144 | 0.7068 | 0.7754 | -1.0 | 0.6857 | 0.7892 | 0.4718 | 0.7725 | 0.5806 | 0.7738 | 0.6799 | 0.78 |
0.5789 | 27.0 | 1620 | 0.8131 | 0.5772 | 0.8438 | 0.6347 | -1.0 | 0.4599 | 0.6098 | 0.4125 | 0.7069 | 0.7747 | -1.0 | 0.6857 | 0.7887 | 0.468 | 0.7675 | 0.5868 | 0.7738 | 0.6769 | 0.7829 |
0.5789 | 28.0 | 1680 | 0.8100 | 0.5787 | 0.845 | 0.6392 | -1.0 | 0.4471 | 0.6121 | 0.4134 | 0.7085 | 0.7741 | -1.0 | 0.6857 | 0.7877 | 0.4728 | 0.7675 | 0.5839 | 0.769 | 0.6793 | 0.7857 |
0.5789 | 29.0 | 1740 | 0.8104 | 0.5786 | 0.8441 | 0.6391 | -1.0 | 0.4455 | 0.6123 | 0.4135 | 0.7094 | 0.7747 | -1.0 | 0.6929 | 0.7875 | 0.4699 | 0.7675 | 0.5845 | 0.7738 | 0.6814 | 0.7829 |
0.5789 | 30.0 | 1800 | 0.8102 | 0.5786 | 0.8446 | 0.6382 | -1.0 | 0.4455 | 0.612 | 0.4135 | 0.7102 | 0.7772 | -1.0 | 0.6929 | 0.7901 | 0.4687 | 0.7725 | 0.5847 | 0.7762 | 0.6823 | 0.7829 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for aiarenm/yolo_finetuned_fruits
Base model
hustvl/yolos-tiny