Skywork-R1V
Collection
pioneering multimodal reasoning with cot
•
5 items
•
Updated
•
8
Benchmark | LLM | VLM | |||||
---|---|---|---|---|---|---|---|
QwQ-32B-Preview | InternVL-2.5-38B | VILA 1.5-40B | InternVL2-40B | Skywork-R1V-38B | Skywork-R1V-AWQ | ||
Reasoning | MATH-500 | 90.6 | - | - | - | 94.0 | 86.0 |
AIME 2024 | 50.0 | - | - | - | 72.0 | 61.0 | |
GPQA | 54.5 | - | - | - | 61.6 | 56.5 | |
Vision | MathVista(mini) | - | 71.9 | 49.5 | 63.7 | 67.5 | 59.9 |
MMMU(Val) | - | 63.9 | 55.1 | 55.2 | 69.0 | 60.1 |
You can use the quantized model with different inference frameworks:
import os
from vllm import LLM, SamplingParams
from vllm.entrypoints.chat_utils import load_chat_template
model_name = "Skywork/Skywork-R1V-38B-AWQ" # or local path
llm = LLM(model_name,
dtype='float16',
quantization="awq",
gpu_memory_utilization=0.85,
max_model_len=4096,
trust_remote_code=True,
)
# Add your inference code here
MODEL_ID="Skywork/Skywork-R1V-38B-AWQ" # or local path
CUDA_VISIBLE_DEVICES=0 \
python -m vllm.entrypoints.openai.api_server \
--model $MODEL_ID \
--dtype float16 \
--quantization awq \
--port 23334 \
--max-model-len 12000 \
--gpu-memory-utilization 0.9 \
--trust-remote-code
import os
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model_path = "Skywork/Skywork-R1V-38B-AWQ" # or local path
engine_config = TurbomindEngineConfig(cache_max_entry_count=0.75)
chat_template_config = ChatTemplateConfig(model_name=model_path)
pipe = pipeline(model_path,
backend_config=engine_config,
chat_template_config=chat_template_config,
)
# Example: Multimodal inference
image = load_image('table.jpg')
response = pipe(('Describe this image?', image))
print(response.text)
The AWQ quantization reduces the memory footprint compared to the original FP16 model. We recommend:
If you use this model in your research, please cite:
@article{skywork2025r1v,
title = {Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought},
author = {Yi Peng, Chris, Xiaokun Wang, Yichen Wei, Jiangbo Pei, Weijie Qiu, Ai Jian, Yunzhuo Hao, Jiachun Pan, Tianyidan Xie, Li Ge, Rongxian Zhuang, Xuchen Song, Yang Liu, Yahui Zhou},
year = {2025},
journal = {https://github.com/SkyworkAI/Skywork-R1V/blob/main/report/Skywork_R1V.pdf},
url = {https://huggingface.co/Skywork/Skywork-R1V-38B}
}
您可以使用不同的推理框架来使用这个量化模型:
import os
from vllm import LLM, SamplingParams
from vllm.entrypoints.chat_utils import load_chat_template
model_name = "Skywork/Skywork-R1V-38B-AWQ" # 或本地路径
llm = LLM(model_name,
dtype='float16',
quantization="awq",
gpu_memory_utilization=0.85,
max_model_len=4096,
trust_remote_code=True,
)
# 在此添加您的推理代码
MODEL_ID="Skywork/Skywork-R1V-38B-AWQ" # 或本地路径
CUDA_VISIBLE_DEVICES=0 \
python -m vllm.entrypoints.openai.api_server \
--model $MODEL_ID \
--dtype float16 \
--quantization awq \
--port 23334 \
--max-model-len 12000 \
--gpu-memory-utilization 0.9 \
--trust-remote-code
import os
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model_path = "Skywork/Skywork-R1V-38B-AWQ" # 或本地路径
engine_config = TurbomindEngineConfig(cache_max_entry_count=0.75)
chat_template_config = ChatTemplateConfig(model_name=model_path)
pipe = pipeline(model_path,
backend_config=engine_config,
chat_template_config=chat_template_config,
)
# 示例:多模态推理
image = load_image('table.jpg')
response = pipe(('描述这个图片?', image))
print(response.text)
与原始 FP16 模型相比,AWQ 量化减少了内存占用。我们建议:
如果您在研究中使用此模型,请引用:
@misc{peng2025skyworkr1vpioneeringmultimodal,
title={Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought},
author={Yi Peng and Chris and Xiaokun Wang and Yichen Wei and Jiangbo Pei and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou},
year={2025},
eprint={2504.05599},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.05599},
}