SamLowe commited on
Commit
ad4a365
·
1 Parent(s): 60a3889

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -1
README.md CHANGED
@@ -122,6 +122,37 @@ Using a fixed threshold of 0.5 to convert the scores to binary predictions for e
122
 
123
  ### Use with ONNXRuntime
124
 
 
 
125
  ```python
126
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  ```
 
 
 
 
 
 
 
 
 
122
 
123
  ### Use with ONNXRuntime
124
 
125
+ The input to the model is called `logits`, and there is one output per label. Each output produces a 2d array, with 1 row per input row, and each row having 2 columns - the first being a proba output for the negative case, and the second being a proba output for the positive case.
126
+
127
  ```python
128
+ # Assuming you have embeddings from BAAI/bge-small-en-v1.5 for the input sentences
129
+ # E.g. produced from sentence-transformers E.g. huggingface.co/BAAI/bge-small-en-v1.5
130
+ # or from an ONNX version E.g. huggingface.co/Xenova/bge-small-en-v1.5
131
+
132
+ print(sentences.shape) # E.g. a batch of 1 sentence
133
+ > (1, 384)
134
+
135
+ import onnxruntime as ort
136
+
137
+ sess = ort.InferenceSession(
138
+ "path_to_model_dot_onnx",
139
+ providers=['CPUExecutionProvider'],
140
+ )
141
+
142
+ outputs = [o.name for o in sess.get_outputs()]
143
+ preds_onnx = sess.run(_outputs, {'logits': _label_embeddings})
144
+ # preds_onnx is a list with 28 entries, each with a numpy array of shape (1, 2)
145
+
146
+ print(outputs[0])
147
+ # surprise
148
+ print(preds_onnx[0])
149
+ # array([[0.97136074, 0.02863926]], dtype=float32)
150
  ```
151
+
152
+ ### Commentary on the dataset
153
+
154
+ Some labels (E.g. gratitude) when considered independently perform very strongly, whilst others (E.g. relief) perform very poorly.
155
+
156
+ This is a challenging dataset. Labels such as relief do have much fewer examples in the training data (less than 100 out of the 40k+, and only 11 in the test split).
157
+
158
+ But there is also some ambiguity and/or labelling errors visible in the training data of go_emotions that is suspected to constrain the performance. Data cleaning on the dataset to reduce some of the mistakes, ambiguity, conflicts and duplication in the labelling would produce a higher performing model.