SamLowe commited on
Commit
60a3889
·
1 Parent(s): ed94491

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -32,12 +32,6 @@ The 28 labels from the [go_emotions](https://huggingface.co/datasets/go_emotions
32
 
33
  This is a multi-label, multi-class dataset, so each label is effectively a separate binary classification. Evaluating across all labels per item in the go_emotions test split the metrics are shown below.
34
 
35
- Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label, the metrics (evaluated on the go_emotions test split) are:
36
-
37
- - Precision: 0.602
38
- - Recall: 0.250
39
- - F1: 0.303
40
-
41
  Optimising the threshold per label to optimise the F1 metric, the metrics (evaluated on the go_emotions test split) are:
42
 
43
  - Precision: 0.445
@@ -50,6 +44,12 @@ Weighted by the relative support of each label in the dataset, this is:
50
  - Recall: 0.582
51
  - F1: 0.514
52
 
 
 
 
 
 
 
53
  ### Metrics (per-label)
54
 
55
  This is a multi-label, multi-class dataset, so each label is effectively a separate binary classification and metrics are better measured per label.
 
32
 
33
  This is a multi-label, multi-class dataset, so each label is effectively a separate binary classification. Evaluating across all labels per item in the go_emotions test split the metrics are shown below.
34
 
 
 
 
 
 
 
35
  Optimising the threshold per label to optimise the F1 metric, the metrics (evaluated on the go_emotions test split) are:
36
 
37
  - Precision: 0.445
 
44
  - Recall: 0.582
45
  - F1: 0.514
46
 
47
+ Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label, the metrics (evaluated on the go_emotions test split, and unweighted by support) are:
48
+
49
+ - Precision: 0.602
50
+ - Recall: 0.250
51
+ - F1: 0.303
52
+
53
  ### Metrics (per-label)
54
 
55
  This is a multi-label, multi-class dataset, so each label is effectively a separate binary classification and metrics are better measured per label.