ner-roberta-large-lenerbr
This model is a fine-tuned version of roberta-large on the lener_br dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.8310
- Recall: 0.8987
- F1: 0.8635
- Accuracy: 0.9723
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0972 | 1.0 | 1957 | nan | 0.7404 | 0.8191 | 0.7778 | 0.9534 |
0.0712 | 2.0 | 3914 | nan | 0.7964 | 0.8437 | 0.8194 | 0.9584 |
0.0477 | 3.0 | 5871 | nan | 0.7845 | 0.8803 | 0.8296 | 0.9650 |
0.0243 | 4.0 | 7828 | nan | 0.7938 | 0.8664 | 0.8285 | 0.9684 |
0.0244 | 5.0 | 9785 | nan | 0.7611 | 0.9106 | 0.8291 | 0.9664 |
0.0322 | 6.0 | 11742 | nan | 0.7793 | 0.8921 | 0.8319 | 0.9672 |
0.0132 | 7.0 | 13699 | nan | 0.8310 | 0.8987 | 0.8635 | 0.9723 |
0.0156 | 8.0 | 15656 | nan | 0.7429 | 0.9170 | 0.8208 | 0.9656 |
0.0082 | 9.0 | 17613 | nan | 0.7658 | 0.9082 | 0.8309 | 0.9668 |
0.0032 | 10.0 | 19570 | nan | 0.7819 | 0.9095 | 0.8409 | 0.9697 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Palu1006/ner-roberta-large-lenerbr
Base model
FacebookAI/roberta-largeDataset used to train Palu1006/ner-roberta-large-lenerbr
Evaluation results
- Precision on lener_brvalidation set self-reported0.831
- Recall on lener_brvalidation set self-reported0.899
- F1 on lener_brvalidation set self-reported0.864
- Accuracy on lener_brvalidation set self-reported0.972