ner-roberta-large-lenerbr

This model is a fine-tuned version of roberta-large on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.8310
  • Recall: 0.8987
  • F1: 0.8635
  • Accuracy: 0.9723

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0972 1.0 1957 nan 0.7404 0.8191 0.7778 0.9534
0.0712 2.0 3914 nan 0.7964 0.8437 0.8194 0.9584
0.0477 3.0 5871 nan 0.7845 0.8803 0.8296 0.9650
0.0243 4.0 7828 nan 0.7938 0.8664 0.8285 0.9684
0.0244 5.0 9785 nan 0.7611 0.9106 0.8291 0.9664
0.0322 6.0 11742 nan 0.7793 0.8921 0.8319 0.9672
0.0132 7.0 13699 nan 0.8310 0.8987 0.8635 0.9723
0.0156 8.0 15656 nan 0.7429 0.9170 0.8208 0.9656
0.0082 9.0 17613 nan 0.7658 0.9082 0.8309 0.9668
0.0032 10.0 19570 nan 0.7819 0.9095 0.8409 0.9697

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
21
Safetensors
Model size
354M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Palu1006/ner-roberta-large-lenerbr

Finetuned
(348)
this model

Dataset used to train Palu1006/ner-roberta-large-lenerbr

Evaluation results