Commit
c003bd3
·
verified ·
1 Parent(s): e457502

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -28
README.md CHANGED
@@ -9,13 +9,18 @@ tags:
9
  - reasoning
10
  - llm
11
  - DIRA
 
 
 
12
  ---
13
 
14
  # Diraya-3B-Instruct-Ar
15
 
16
  ## Model Description
17
 
18
- Diraya-3B-Instruct-Ar is an Arabic reasoning-specialized language model fine-tuned from Qwen2.5-3B. This model is part of the DIRA (Diraya Arabic Reasoning AI) collection, which focuses on enhancing the logical inference and mathematical reasoning capabilities of Arabic language models.
 
 
19
 
20
  ## Key Features
21
 
@@ -31,7 +36,6 @@ Diraya-3B-Instruct-Ar is an Arabic reasoning-specialized language model fine-tun
31
 
32
  **Model Type**: Instruction-tuned causal language model
33
 
34
- **Parameter Count**: 3.09B (2.77B non-embedding)
35
 
36
  **Architecture**:
37
  - 36 transformer layers
@@ -40,7 +44,7 @@ Diraya-3B-Instruct-Ar is an Arabic reasoning-specialized language model fine-tun
40
  - Context length: 32,768 tokens
41
 
42
  **Training Approach**:
43
- - Fine-tuned using GPRO (General Policy Reinforcement Optimization)
44
  - Training focused on structured reasoning output format using XML tags
45
  - Optimized for mathematical reasoning using the Arabic GSM8K dataset
46
  - Multiple reward functions including correctness, format adherence, and output structure
@@ -77,12 +81,16 @@ The model is designed to output structured reasoning in the following format:
77
  ### Example Usage
78
 
79
  ```python
80
- from transformers import AutoModelForCausalLM, AutoTokenizer
 
 
 
 
 
 
 
 
81
 
82
- # Load the model and tokenizer
83
- model_name = "Omartificial-Intelligence-Space/Diraya-3B-Instruct-Ar"
84
- model = AutoModelForCausalLM.from_pretrained(model_name)
85
- tokenizer = AutoTokenizer.from_pretrained(model_name)
86
 
87
  # System prompt to enforce XML structure
88
  system_prompt = """
@@ -121,8 +129,8 @@ print(response)
121
 
122
  This model was primarily fine-tuned on:
123
 
124
- - **Arabic GSM8K Dataset**: A comprehensive collection of grade school math problems translated to Arabic, requiring multi-step reasoning
125
- - **Format**: Training emphasized structured reasoning using XML tags to clearly separate reasoning steps from final answers
126
 
127
  ## Training and Evaluation Results
128
 
@@ -146,23 +154,6 @@ The model demonstrates strong performance on Arabic mathematical reasoning tasks
146
  - Following the required XML output format
147
  - Arriving at correct numerical answers for multi-step problems
148
 
149
- ## Limitations
150
-
151
- - Specialized for reasoning tasks and may not perform as well on general conversational tasks
152
- - Performance may vary on complex mathematical problems beyond grade-school level
153
- - Limited to the Arabic language
154
-
155
- ## Responsible Use
156
-
157
- This model is intended for educational and research purposes. While it excels at mathematical reasoning, please note:
158
- - It should not replace human judgment for critical decisions
159
- - Results should be verified when used in educational contexts
160
- - The model inherits limitations from its base model Qwen2.5-3B
161
-
162
- ## Related Resources
163
-
164
- This model is part of the DIRA (Diraya Arabic Reasoning AI) collection:
165
- - [Arabic GSM8K Dataset](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-gsm8k): The dataset used for training this model
166
 
167
  ## Citation
168
 
@@ -196,4 +187,4 @@ This model builds upon the Qwen2.5-3B model by the Qwen Team and utilizes optimi
196
  journal={arXiv preprint arXiv:2407.10671},
197
  year={2024}
198
  }
199
- ```
 
9
  - reasoning
10
  - llm
11
  - DIRA
12
+ - qwen
13
+ - unsloth
14
+ - transformers
15
  ---
16
 
17
  # Diraya-3B-Instruct-Ar
18
 
19
  ## Model Description
20
 
21
+ **Diraya-3B-Instruct-Ar** is an `Arabic` reasoning-specialized language model fine-tuned from `Qwen2.5-3B` .
22
+
23
+ This model is part of the **DIRA (Diraya Arabic Reasoning AI)** collection, which focuses on enhancing the logical inference and mathematical reasoning capabilities of **Arabic** language models.
24
 
25
  ## Key Features
26
 
 
36
 
37
  **Model Type**: Instruction-tuned causal language model
38
 
 
39
 
40
  **Architecture**:
41
  - 36 transformer layers
 
44
  - Context length: 32,768 tokens
45
 
46
  **Training Approach**:
47
+ - Fine-tuned using `GPRO`
48
  - Training focused on structured reasoning output format using XML tags
49
  - Optimized for mathematical reasoning using the Arabic GSM8K dataset
50
  - Multiple reward functions including correctness, format adherence, and output structure
 
81
  ### Example Usage
82
 
83
  ```python
84
+ from unsloth import FastLanguageModel
85
+
86
+ model, tokenizer = FastLanguageModel.from_pretrained(
87
+ model_name = "Omartificial-Intelligence-Space/Diraya-3B-Instruct-Ar",
88
+ max_seq_length = max_seq_length,
89
+ load_in_4bit = True, # False for LoRA 16bit
90
+ fast_inference = True, # Enable vLLM fast inference
91
+ max_lora_rank = lora_rank,
92
+ )
93
 
 
 
 
 
94
 
95
  # System prompt to enforce XML structure
96
  system_prompt = """
 
129
 
130
  This model was primarily fine-tuned on:
131
 
132
+ - [**Arabic GSM8K Dataset**](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-gsm8k):
133
+ - A comprehensive collection of grade school math problems translated to Arabic, requiring multi-step reasoning
134
 
135
  ## Training and Evaluation Results
136
 
 
154
  - Following the required XML output format
155
  - Arriving at correct numerical answers for multi-step problems
156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
 
158
  ## Citation
159
 
 
187
  journal={arXiv preprint arXiv:2407.10671},
188
  year={2024}
189
  }
190
+ ```