Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,199 @@
|
|
1 |
---
|
2 |
base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- PEFT 0.14.0
|
|
|
1 |
---
|
2 |
base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit
|
3 |
library_name: peft
|
4 |
+
license: apache-2.0
|
5 |
+
language:
|
6 |
+
- ar
|
7 |
+
tags:
|
8 |
+
- arabic
|
9 |
+
- reasoning
|
10 |
+
- llm
|
11 |
+
- DIRA
|
12 |
---
|
13 |
|
14 |
+
# Diraya-3B-Instruct-Ar
|
15 |
+
|
16 |
+
## Model Description
|
17 |
+
|
18 |
+
Diraya-3B-Instruct-Ar is an Arabic reasoning-specialized language model fine-tuned from Qwen2.5-3B. This model is part of the DIRA (Diraya Arabic Reasoning AI) collection, which focuses on enhancing the logical inference and mathematical reasoning capabilities of Arabic language models.
|
19 |
+
|
20 |
+
## Key Features
|
21 |
+
|
22 |
+
- **Arabic-first reasoning**: Optimized specifically for complex reasoning tasks in Arabic
|
23 |
+
- **Structured reasoning format**: Trained to output reasoning in a clear XML format
|
24 |
+
- **Mathematical reasoning**: Enhanced ability to solve multi-step math problems
|
25 |
+
- **Instruction-tuned**: Follows instructions reliably in Arabic
|
26 |
+
- **Lightweight**: Based on the efficient 3B parameter model architecture
|
27 |
+
|
28 |
+
## Technical Details
|
29 |
+
|
30 |
+
**Base Model**: [Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) via [unsloth/Qwen2.5-3B-Instruct-unsloth-bnb-4bit](https://huggingface.co/unsloth/Qwen2.5-3B-Instruct-unsloth-bnb-4bit)
|
31 |
|
32 |
+
**Model Type**: Instruction-tuned causal language model
|
33 |
|
34 |
+
**Parameter Count**: 3.09B (2.77B non-embedding)
|
35 |
|
36 |
+
**Architecture**:
|
37 |
+
- 36 transformer layers
|
38 |
+
- 16 attention heads for queries (GQA)
|
39 |
+
- 2 attention heads for keys/values
|
40 |
+
- Context length: 32,768 tokens
|
41 |
|
42 |
+
**Training Approach**:
|
43 |
+
- Fine-tuned using GPRO (General Policy Reinforcement Optimization)
|
44 |
+
- Training focused on structured reasoning output format using XML tags
|
45 |
+
- Optimized for mathematical reasoning using the Arabic GSM8K dataset
|
46 |
+
- Multiple reward functions including correctness, format adherence, and output structure
|
47 |
|
48 |
+
**LoRA Configuration**:
|
49 |
+
```json
|
50 |
+
{
|
51 |
+
"peft_type": "LORA",
|
52 |
+
"r": 64,
|
53 |
+
"lora_alpha": 64,
|
54 |
+
"lora_dropout": 0,
|
55 |
+
"target_modules": [
|
56 |
+
"k_proj", "gate_proj", "o_proj", "down_proj",
|
57 |
+
"v_proj", "up_proj", "q_proj"
|
58 |
+
],
|
59 |
+
"bias": "none",
|
60 |
+
"inference_mode": true
|
61 |
+
}
|
62 |
+
```
|
63 |
|
64 |
+
## Usage
|
65 |
|
66 |
+
The model is designed to output structured reasoning in the following format:
|
67 |
|
68 |
+
```
|
69 |
+
<reasoning>
|
70 |
+
[Step-by-step reasoning process in Arabic]
|
71 |
+
</reasoning>
|
72 |
+
<answer>
|
73 |
+
[Final answer in Arabic]
|
74 |
+
</answer>
|
75 |
+
```
|
76 |
|
77 |
+
### Example Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
```python
|
80 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
81 |
|
82 |
+
# Load the model and tokenizer
|
83 |
+
model_name = "Omartificial-Intelligence-Space/Diraya-3B-Instruct-Ar"
|
84 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
86 |
|
87 |
+
# System prompt to enforce XML structure
|
88 |
+
system_prompt = """
|
89 |
+
Respond in the following format in Arabic language only:
|
90 |
+
<reasoning>
|
91 |
+
...
|
92 |
+
</reasoning>
|
93 |
+
<answer>
|
94 |
+
...
|
95 |
+
</answer>
|
96 |
+
"""
|
97 |
|
98 |
+
# Prepare user question
|
99 |
+
user_question = "كل يوم، تُطعم وندي كل دجاجة من دجاجاتها ثلاث أكواب من العلف المختلط. تقدم الدجاجات وجباتهم في ثلاث وجبات منفصلة. في الصباح، تعطي قطيعها من الدجاج 15 كوبًا من العلف. في فترة ما بعد الظهر، تعطي دجاجاتها 25 كوبًا أخرى من العلف. كم عدد أكواب العلف التي تحتاجها لتقديمها لدجاجاتها في الوجبة الأخيرة من اليوم إذا كان حجم قطيع وندي 20 دجاجة؟"
|
100 |
|
101 |
+
# Prepare input for the model
|
102 |
+
messages = [
|
103 |
+
{"role": "system", "content": system_prompt},
|
104 |
+
{"role": "user", "content": user_question}
|
105 |
+
]
|
106 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
107 |
|
108 |
+
# Generate response
|
109 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
110 |
+
outputs = model.generate(
|
111 |
+
**inputs,
|
112 |
+
max_new_tokens=512,
|
113 |
+
temperature=0.7,
|
114 |
+
top_p=0.95
|
115 |
+
)
|
116 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
117 |
+
print(response)
|
118 |
+
```
|
119 |
+
|
120 |
+
## Training Data
|
121 |
+
|
122 |
+
This model was primarily fine-tuned on:
|
123 |
+
|
124 |
+
- **Arabic GSM8K Dataset**: A comprehensive collection of grade school math problems translated to Arabic, requiring multi-step reasoning
|
125 |
+
- **Format**: Training emphasized structured reasoning using XML tags to clearly separate reasoning steps from final answers
|
126 |
+
|
127 |
+
## Training and Evaluation Results
|
128 |
+
|
129 |
+
### Training Progress
|
130 |
+
|
131 |
+
|
132 |
+

|
133 |
+
|
134 |
+
*Figure: Composition of Rewards over Training Steps showing the evolution of model performance across different reward functions*
|
135 |
+
|
136 |
+
The training utilized multiple reward functions to optimize different aspects of the model's performance:
|
137 |
+
- **Correctness Reward** (red): Measures the model's ability to generate the correct final answer
|
138 |
+
- **Integer Reward** (blue): Ensures the model outputs valid numerical responses
|
139 |
+
- **Format Rewards** (purple/gray): Promote proper XML structure adherence
|
140 |
+
- **XML Count Reward** (yellow): Fine-tunes the exact XML tag placement and completeness
|
141 |
+
|
142 |
+
As shown in the visualization, the model demonstrated consistent improvement across all reward dimensions throughout the training process. The upper values in rewards indicate higher-quality outputs that simultaneously satisfy multiple optimization criteria. This multi-objective training approach resulted in a model that not only produces correct answers but does so with clear, well-structured reasoning.
|
143 |
+
|
144 |
+
The model demonstrates strong performance on Arabic mathematical reasoning tasks, with particular strengths in:
|
145 |
+
- Producing well-structured reasoning steps
|
146 |
+
- Following the required XML output format
|
147 |
+
- Arriving at correct numerical answers for multi-step problems
|
148 |
+
|
149 |
+
## Limitations
|
150 |
+
|
151 |
+
- Specialized for reasoning tasks and may not perform as well on general conversational tasks
|
152 |
+
- Performance may vary on complex mathematical problems beyond grade-school level
|
153 |
+
- Limited to the Arabic language
|
154 |
+
|
155 |
+
## Responsible Use
|
156 |
+
|
157 |
+
This model is intended for educational and research purposes. While it excels at mathematical reasoning, please note:
|
158 |
+
- It should not replace human judgment for critical decisions
|
159 |
+
- Results should be verified when used in educational contexts
|
160 |
+
- The model inherits limitations from its base model Qwen2.5-3B
|
161 |
|
162 |
+
## Related Resources
|
163 |
|
164 |
+
This model is part of the DIRA (Diraya Arabic Reasoning AI) collection:
|
165 |
+
- [Arabic GSM8K Dataset](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-gsm8k): The dataset used for training this model
|
166 |
+
|
167 |
+
## Citation
|
168 |
+
|
169 |
+
If you use this model in your research, please cite:
|
170 |
+
|
171 |
+
```bibtex
|
172 |
+
@misc{diraya3b,
|
173 |
+
title={Diraya-3B-Instruct-Ar: An Arabic Reasoning-Specialized Language Model},
|
174 |
+
author={Omartificial-Intelligence-Space},
|
175 |
+
year={2025},
|
176 |
+
howpublished={\url{https://huggingface.co/Omartificial-Intelligence-Space/Diraya-3B-Instruct-Ar}}
|
177 |
+
}
|
178 |
+
```
|
179 |
+
|
180 |
+
## Acknowledgements
|
181 |
|
182 |
+
This model builds upon the Qwen2.5-3B model by the Qwen Team and utilizes optimization techniques from Unsloth. We acknowledge their valuable contributions to the field of language modeling.
|
183 |
+
|
184 |
+
```bibtex
|
185 |
+
@misc{qwen2.5,
|
186 |
+
title = {Qwen2.5: A Party of Foundation Models},
|
187 |
+
url = {https://qwenlm.github.io/blog/qwen2.5/},
|
188 |
+
author = {Qwen Team},
|
189 |
+
month = {September},
|
190 |
+
year = {2024}
|
191 |
+
}
|
192 |
|
193 |
+
@article{qwen2,
|
194 |
+
title={Qwen2 Technical Report},
|
195 |
+
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
|
196 |
+
journal={arXiv preprint arXiv:2407.10671},
|
197 |
+
year={2024}
|
198 |
+
}
|
199 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|