xlm-roberta-base_nli_classifier_mnli_anli_fevernli_xnli
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4009
- F1 Macro: 0.8209
- F1 Micro: 0.8417
- Accuracy Balanced: 0.8175
- Accuracy: 0.8417
- Precision Macro: 0.8247
- Recall Macro: 0.8175
- Precision Micro: 0.8417
- Recall Micro: 0.8417
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Accuracy | Accuracy Balanced | F1 Macro | F1 Micro | Validation Loss | Precision Macro | Precision Micro | Recall Macro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.2817 | 1.0 | 12340 | 0.8361 | 0.8121 | 0.8149 | 0.8361 | 0.3796 | 0.8179 | 0.8361 | 0.8121 | 0.8361 |
0.2258 | 2.0 | 24680 | 0.4009 | 0.8209 | 0.8417 | 0.8175 | 0.8417 | 0.8247 | 0.8175 | 0.8417 | 0.8417 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 7