Files changed (1) hide show
  1. README.md +130 -0
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - lmms-lab/llava-onevision-qwen2-0.5b-ov
7
+ pipeline_tag: video-text-to-text
8
+ tags:
9
+ - Action
10
+ - Video
11
+ - MQA
12
+ - multimodal
13
+ metrics:
14
+ - accuracy
15
+ library_name: transformers
16
+ ---
17
+
18
+ # LLaVAction-0.5B
19
+
20
+ ## Model Summary
21
+ The LLaVAction-0.5B model is trained on EPIC-KITCHENS-100-MQA, based on Qwen2 language model with a context window of 32K tokens.
22
+
23
+ - **Project Page**: [https://mmathislab.github.io/llavaction/](https://mmathislab.github.io/llavaction/)
24
+ - **Paper**: For more details, please check our [paper](https://arxiv.org/abs/tbd)
25
+ - **Repository**: [https://github.com/AdaptiveMotorControlLab/LLaVAction](https://github.com/AdaptiveMotorControlLab/LLaVAction)
26
+ - **Point of Contact**: [Mackenzie Mathis](https://people.epfl.ch/mackenzie.mathis)
27
+ - **Languages**: English
28
+ -
29
+ ## Use
30
+
31
+ ### Intended use
32
+ The model was trained on EPIC-KITCHENS-100-MQA. It's intended to be used on videos that are similar to EPIC-KITCHENS-100.
33
+
34
+
35
+ **Feel free to share your generations in the Community tab!**
36
+
37
+
38
+ ### Generation
39
+ We provide the simple generation process for using our model. For more details, you could refer to Github.
40
+
41
+ ```python
42
+ !pip install llavaction
43
+ from llavaction.model.builder import load_pretrained_model
44
+ from llavaction.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
45
+ from llavaction.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
46
+ from llavaction.conversation import conv_templates, SeparatorStyle
47
+ from PIL import Image
48
+ import requests
49
+ import copy
50
+ import torch
51
+ import sys
52
+ import warnings
53
+ from decord import VideoReader, cpu
54
+ import numpy as np
55
+ warnings.filterwarnings("ignore")
56
+ def load_video(video_path, max_frames_num,fps=1,force_sample=False):
57
+ if max_frames_num == 0:
58
+ return np.zeros((1, 336, 336, 3))
59
+ vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
60
+ total_frame_num = len(vr)
61
+ video_time = total_frame_num / vr.get_avg_fps()
62
+ fps = round(vr.get_avg_fps()/fps)
63
+ frame_idx = [i for i in range(0, len(vr), fps)]
64
+ if len(frame_idx) > max_frames_num or force_sample:
65
+ sample_fps = max_frames_num
66
+ uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
67
+ frame_idx = uniform_sampled_frames.tolist()
68
+ frame_time = [i/vr.get_avg_fps() for i in frame_idx]
69
+ spare_frames = vr.get_batch(frame_idx).asnumpy()
70
+ # import pdb;pdb.set_trace()
71
+ return spare_frames,frame_time,video_time
72
+ pretrained = "MLAdaptiveIntelligence/LLaVAction-0.5B"
73
+ model_name = "llava_qwen"
74
+ device = "cuda"
75
+ device_map = "auto"
76
+ tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
77
+ model.eval()
78
+ video_path = "XXXX"
79
+ max_frames_num = 64
80
+ video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
81
+ video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().half()
82
+ video = [video]
83
+ conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
84
+ time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
85
+ perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
86
+ task_prompt = "Describe in details what you see from the video frames."
87
+ question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"
88
+ conv = copy.deepcopy(conv_templates[conv_template])
89
+ conv.append_message(conv.roles[0], question)
90
+ conv.append_message(conv.roles[1], None)
91
+ prompt_question = conv.get_prompt()
92
+ input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
93
+ cont = model.generate(
94
+ input_ids,
95
+ images=video,
96
+ modalities= ["video"],
97
+ do_sample=False,
98
+ temperature=0,
99
+ max_new_tokens=4096,
100
+ )
101
+ text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
102
+ print(text_outputs)
103
+ ```
104
+
105
+
106
+ ## Training
107
+
108
+
109
+ ### Model
110
+ - **Architecture**: SO400M + Qwen2
111
+ - **Initialized Model**: lmms-lab/llava-onevision-qwen2-0.5b-ov
112
+ - **Data**: EPIC-KITCHENS-100-MQA, 2 epochs, full model
113
+ - **Precision**: bfloat16
114
+
115
+
116
+ ### Hardware & Software
117
+ GPUs: 32 * Nvidia GH-200 (for whole model series training)
118
+ Orchestration: HuggingFace Trainer
119
+ Neural networks: PyTorch
120
+
121
+ ## Citation
122
+
123
+ ```bibtex
124
+ @article{YeQi2025llavaction,
125
+ title={LLaVAction: evaluating and training multi-modal large language models for action recognition},
126
+ author={Ye, Shaokai and Qi, Haozhe and Mathis, Alexander and Mathis, Mackenzie W.},
127
+ journal={arXiv preprint},
128
+ year={2025}
129
+ }
130
+ ```