VinaLLaMA-7B Vietnamese Merged Model
Merged VinaLLaMA-7B model fine-tuned for Vietnamese language tasks.
Model Details
- Base Model: vilm/vinallama-7b-chat
- Fine-tuning Method: LoRA (merged with base model)
- Language: Vietnamese
- Training Data: Alpaca + ViQuAD
- Model Type: Causal Language Model
- License: MIT
Usage
Direct Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the merged model directly
model = AutoModelForCausalLM.from_pretrained("Key1111/vinallama-vietnamese-merged")
tokenizer = AutoTokenizer.from_pretrained("Key1111/vinallama-vietnamese-merged")
# Generate text
prompt = "Xin chào! Bạn có thể giúp tôi không?"
formatted_prompt = f"<|im_start|>user\n{{prompt}}<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(formatted_prompt, return_tensors="pt", truncation=True, max_length=512)
outputs = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
In n8n
Use this model directly in Hugging Face Inference nodes:
- Model:
Key1111/vinallama-vietnamese-merged
- No additional configuration needed
Inference API
import requests
API_URL = "https://api-inference.huggingface.co/models/Key1111/vinallama-vietnamese-merged"
headers = {"Authorization": "Bearer hf_xxx"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": "Xin chào! Bạn có thể giúp tôi không?",
"parameters": {
"max_new_tokens": 256,
"temperature": 0.7,
"top_p": 0.9
}
})
Training Details
- Base Model: vilm/vinallama-7b-chat
- LoRA Rank: 8
- LoRA Alpha: 16
- Training Data: Alpaca + ViQuAD
- Language: Vietnamese
- Training Method: LoRA (Low-Rank Adaptation)
Limitations
- Model is trained on Vietnamese data and may not perform well on other languages
- Requires significant computational resources for inference
- May generate biased or incorrect responses
Citation
@misc{vinallama-vietnamese-merged,
author = {Key1111},
title = {VinaLLaMA-7B Vietnamese Merged Model},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/Key1111/vinallama-vietnamese-merged}
}
- Downloads last month
- 13
Evaluation results
- accuracy on ViQuADself-reported0.850
- instruction-following-score on Alpaca Vietnameseself-reported0.920