KasuleTrevor's picture
End of training
78ab3ae verified
metadata
library_name: transformers
base_model: KasuleTrevor/wav2vec2-xls-r-300m-nyn_filtered-yogera-v3
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: Luganda_speech_to_intent_nyn_xlsr
    results: []

Luganda_speech_to_intent_nyn_xlsr

This model is a fine-tuned version of KasuleTrevor/wav2vec2-xls-r-300m-nyn_filtered-yogera-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1401
  • Accuracy: 0.9757
  • Precision: 0.9761
  • Recall: 0.9757
  • F1: 0.9755

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.9405 1.0 131 2.3617 0.5163 0.4655 0.5163 0.4450
1.9336 2.0 262 0.1540 0.9859 0.9865 0.9859 0.9858
0.3581 3.0 393 0.0748 0.9902 0.9904 0.9902 0.9902
0.1253 4.0 524 0.0730 0.9881 0.9884 0.9881 0.9881
0.1166 5.0 655 0.0609 0.9913 0.9915 0.9913 0.9913
0.1071 6.0 786 0.0667 0.9913 0.9915 0.9913 0.9913
0.0836 7.0 917 0.0601 0.9902 0.9904 0.9902 0.9902
0.0736 8.0 1048 0.0611 0.9913 0.9915 0.9913 0.9913
0.0612 9.0 1179 0.0633 0.9902 0.9904 0.9902 0.9902
0.0553 10.0 1310 0.0657 0.9902 0.9904 0.9902 0.9902
0.0478 11.0 1441 0.0650 0.9913 0.9915 0.9913 0.9913
0.0392 12.0 1572 0.0681 0.9902 0.9904 0.9902 0.9902

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.6.0
  • Tokenizers 0.21.2