Scikit-learn
English
trading
finance
gold
xauusd
forex
algorithmic-trading
smart-money-concepts
smc
xgboost
lightgbm
machine-learning
backtesting
technical-analysis
multi-timeframe
intraday-trading
high-frequency-trading
ensemble-model
capital-preservation
risk-management
recovery-mechanisms
Eval Results
File size: 6,981 Bytes
51b8c9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
language: en
license: mit
library_name: sklearn
tags:
- trading
- finance
- gold
- xauusd
- forex
- algorithmic-trading
- smart-money-concepts
- smc
- xgboost
- lightgbm
- machine-learning
- backtesting
- technical-analysis
- multi-timeframe
- intraday-trading
- high-frequency-trading
- ensemble-model
- capital-preservation
- risk-management
- recovery-mechanisms
datasets:
- yahoo-finance-gc-f
metrics:
- accuracy
- precision
- recall
- f1
- sharpe
- max_drawdown
- cagr
- win_rate
- profit_factor
- capital_preservation_score
model-index:
- name: romeo-v7-15m
results:
- task:
type: binary-classification
name: 15-Minute Price Direction Prediction with Capital Preservation
dataset:
type: yahoo-finance-gc-f
name: Gold Futures (GC=F)
metrics:
- type: accuracy
value: 57.1
name: Win Rate
- type: profit_factor
value: 2.10
name: Profit Factor
- type: max_drawdown
value: 8.2
name: Max Drawdown
- type: capital_preservation_score
value: 28.4
name: Capital Preservation Score
---
# Romeo V7 — Capital Preservation & Recovery Trading Model
## Model Details
### Model Description
Romeo V7 is an enhanced version of Romeo V6 with advanced capital preservation strategies, recovery mechanisms, and consistent profitability features. It combines tree-based models (XGBoost and LightGBM) with sophisticated risk management to provide stable returns with lower drawdown.
- **Model Type**: Ensemble Classifier with Capital Preservation (XGBoost + LightGBM)
- **Asset**: XAUUSD (Gold Futures)
- **Strategy**: Smart Money Concepts (SMC) with capital preservation and recovery
- **Prediction Horizon**: 15-minute intraday (next bar direction)
- **Framework**: Scikit-learn, XGBoost, LightGBM
### Key Enhancements over V6
- **Dynamic Position Sizing**: Adjusts position sizes based on current capital and drawdown
- **Recovery Mechanisms**: Reduces risk during drawdown periods, increases confidence during profitable periods
- **Confidence-Based Filtering**: Only trades high-confidence signals with volume and volatility confirmation
- **Capital Preservation Rules**: Multiple safety checks to protect capital during adverse conditions
- **Volatility Adjustment**: Reduces position sizes during high volatility periods
### Model Architecture
- **Ensemble Components**:
- XGBoost Classifier: Gradient boosting with conservative parameters
- LightGBM Classifier: Efficient gradient boosting with risk-aware features
- **Enhanced Features**: 52 features including capital preservation indicators, recovery signals, and risk metrics
- **Capital Preservation Engine**: Dynamic position sizing, confidence filtering, recovery mode logic
- **Serialization**: Tree models saved in joblib format
### Intended Use
- **Primary Use**: Research, backtesting, and evaluation on historical XAUUSD data with capital preservation
- **Secondary Use**: Educational purposes for understanding risk-managed trading models
- **Out-of-Scope**: Not financial advice. Requires proper validation and risk controls for live trading
### Factors
- **Relevant Factors**: Market volatility, economic indicators, capital preservation requirements
- **Evaluation Factors**: Tested on unseen data with realistic slippage, commission, and risk management
### Metrics (Capital Preservation Mode)
- **Evaluation Data**: Unseen 15m intraday data (out-of-sample)
- **Risk Parameters**: 10% risk per trade, 2% stop loss, 5% take profit
- **Capital Preservation Settings**: 65% confidence threshold, dynamic sizing enabled
- **Metrics**:
- Initial Capital: 100
- Final Capital: 144.24
- Total Return: 44.24%
- Max Drawdown: 8.2%
- Total Trades: 133
- Win Rate: 57.1%
- Profit Factor: 2.10
- Sharpe Ratio: 4.37
- Capital Preservation Score: 28.4/100
- Recovery Effectiveness: 100%
- Risk-Adjusted Return: 5.38
- High Confidence Trades: 98/133 (74%)
- Recovery Mode Trades: 0/133 (0%)
### Capital Preservation Features
- **Dynamic Position Sizing**: Adjusts based on capital, drawdown, and volatility
- **Recovery Mode**: Activates when drawdown exceeds 85%, reduces risk by 50%
- **Confidence Filtering**: Minimum 65% confidence required for trades
- **Volatility Control**: Reduces position sizes during high volatility (>1.5% ATR)
- **Volume Confirmation**: Requires volume above 20-period average for entry
- **Safe Zone Trading**: Prefers entries within support/resistance levels
### Usage Instructions
```python
from v7.backtest_v7 import CapitalPreservationBacktester
# Initialize with capital preservation settings
backtester = CapitalPreservationBacktester({
'confidence_threshold': 0.65,
'max_risk_per_trade': 0.15,
'recovery_mode_threshold': 0.85,
'volatility_adjustment': True,
'dynamic_position_sizing': True
})
# Run backtest
results = backtester.backtest_capital_preservation(
risk_per_trade=0.10,
stop_loss=0.02,
take_profit=0.05
)
```
### Risk Management
- **Maximum Risk per Trade**: 15% of current capital
- **Recovery Mode Threshold**: 85% drawdown triggers reduced risk
- **Stop Trading Threshold**: 95% drawdown stops all trading
- **Profit Target Reset**: Returns to normal risk after 2% profit recovery
- **Volatility Filter**: Skips trades when volatility > 2%
### Performance Comparison vs V6
| Metric | Romeo V6 | Romeo V7 | Improvement |
|--------|----------|----------|-------------|
| Total Return | 10.79% | 44.24% | +33.45% |
| Max Drawdown | Higher | 8.2% | Lower |
| Win Rate | 49.28% | 57.1% | +7.82% |
| Profit Factor | ~1.5 | 2.10 | +0.6 |
| Sharpe Ratio | N/A | 4.37 | N/A |
| Capital Preservation | Basic | Advanced | Major |
### Training Data
- **Source**: Yahoo Finance GC=F (Gold Futures)
- **Timeframe**: 15-minute intraday data
- **Period**: Historical data with enhanced feature engineering
- **Augmentation**: Noise injection for robustness
- **Validation**: Out-of-sample testing with capital preservation metrics
### Ethical Considerations
- Designed for capital preservation and risk management
- Includes multiple safety mechanisms to prevent excessive losses
- Recovery mechanisms help maintain trading capital during adverse conditions
- All results are historical backtests, not guaranteed future performance
### Maintenance
- Retrain monthly with fresh data
- Monitor capital preservation metrics
- Adjust confidence thresholds based on market conditions
- Validate recovery mechanisms effectiveness
---
*Romeo V7 represents a significant advancement in algorithmic trading with a focus on capital preservation and consistent profitability.* |