JonusNattapong commited on
Commit
51b8c9f
·
verified ·
1 Parent(s): 6aab2a5

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +186 -0
README.md ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ library_name: sklearn
5
+ tags:
6
+ - trading
7
+ - finance
8
+ - gold
9
+ - xauusd
10
+ - forex
11
+ - algorithmic-trading
12
+ - smart-money-concepts
13
+ - smc
14
+ - xgboost
15
+ - lightgbm
16
+ - machine-learning
17
+ - backtesting
18
+ - technical-analysis
19
+ - multi-timeframe
20
+ - intraday-trading
21
+ - high-frequency-trading
22
+ - ensemble-model
23
+ - capital-preservation
24
+ - risk-management
25
+ - recovery-mechanisms
26
+ datasets:
27
+ - yahoo-finance-gc-f
28
+ metrics:
29
+ - accuracy
30
+ - precision
31
+ - recall
32
+ - f1
33
+ - sharpe
34
+ - max_drawdown
35
+ - cagr
36
+ - win_rate
37
+ - profit_factor
38
+ - capital_preservation_score
39
+ model-index:
40
+ - name: romeo-v7-15m
41
+ results:
42
+ - task:
43
+ type: binary-classification
44
+ name: 15-Minute Price Direction Prediction with Capital Preservation
45
+ dataset:
46
+ type: yahoo-finance-gc-f
47
+ name: Gold Futures (GC=F)
48
+ metrics:
49
+ - type: accuracy
50
+ value: 57.1
51
+ name: Win Rate
52
+ - type: profit_factor
53
+ value: 2.10
54
+ name: Profit Factor
55
+ - type: max_drawdown
56
+ value: 8.2
57
+ name: Max Drawdown
58
+ - type: capital_preservation_score
59
+ value: 28.4
60
+ name: Capital Preservation Score
61
+ ---
62
+
63
+ # Romeo V7 — Capital Preservation & Recovery Trading Model
64
+
65
+ ## Model Details
66
+
67
+ ### Model Description
68
+ Romeo V7 is an enhanced version of Romeo V6 with advanced capital preservation strategies, recovery mechanisms, and consistent profitability features. It combines tree-based models (XGBoost and LightGBM) with sophisticated risk management to provide stable returns with lower drawdown.
69
+
70
+ - **Model Type**: Ensemble Classifier with Capital Preservation (XGBoost + LightGBM)
71
+ - **Asset**: XAUUSD (Gold Futures)
72
+ - **Strategy**: Smart Money Concepts (SMC) with capital preservation and recovery
73
+ - **Prediction Horizon**: 15-minute intraday (next bar direction)
74
+ - **Framework**: Scikit-learn, XGBoost, LightGBM
75
+
76
+ ### Key Enhancements over V6
77
+ - **Dynamic Position Sizing**: Adjusts position sizes based on current capital and drawdown
78
+ - **Recovery Mechanisms**: Reduces risk during drawdown periods, increases confidence during profitable periods
79
+ - **Confidence-Based Filtering**: Only trades high-confidence signals with volume and volatility confirmation
80
+ - **Capital Preservation Rules**: Multiple safety checks to protect capital during adverse conditions
81
+ - **Volatility Adjustment**: Reduces position sizes during high volatility periods
82
+
83
+ ### Model Architecture
84
+ - **Ensemble Components**:
85
+ - XGBoost Classifier: Gradient boosting with conservative parameters
86
+ - LightGBM Classifier: Efficient gradient boosting with risk-aware features
87
+ - **Enhanced Features**: 52 features including capital preservation indicators, recovery signals, and risk metrics
88
+ - **Capital Preservation Engine**: Dynamic position sizing, confidence filtering, recovery mode logic
89
+ - **Serialization**: Tree models saved in joblib format
90
+
91
+ ### Intended Use
92
+ - **Primary Use**: Research, backtesting, and evaluation on historical XAUUSD data with capital preservation
93
+ - **Secondary Use**: Educational purposes for understanding risk-managed trading models
94
+ - **Out-of-Scope**: Not financial advice. Requires proper validation and risk controls for live trading
95
+
96
+ ### Factors
97
+ - **Relevant Factors**: Market volatility, economic indicators, capital preservation requirements
98
+ - **Evaluation Factors**: Tested on unseen data with realistic slippage, commission, and risk management
99
+
100
+ ### Metrics (Capital Preservation Mode)
101
+ - **Evaluation Data**: Unseen 15m intraday data (out-of-sample)
102
+ - **Risk Parameters**: 10% risk per trade, 2% stop loss, 5% take profit
103
+ - **Capital Preservation Settings**: 65% confidence threshold, dynamic sizing enabled
104
+ - **Metrics**:
105
+ - Initial Capital: 100
106
+ - Final Capital: 144.24
107
+ - Total Return: 44.24%
108
+ - Max Drawdown: 8.2%
109
+ - Total Trades: 133
110
+ - Win Rate: 57.1%
111
+ - Profit Factor: 2.10
112
+ - Sharpe Ratio: 4.37
113
+ - Capital Preservation Score: 28.4/100
114
+ - Recovery Effectiveness: 100%
115
+ - Risk-Adjusted Return: 5.38
116
+ - High Confidence Trades: 98/133 (74%)
117
+ - Recovery Mode Trades: 0/133 (0%)
118
+
119
+ ### Capital Preservation Features
120
+ - **Dynamic Position Sizing**: Adjusts based on capital, drawdown, and volatility
121
+ - **Recovery Mode**: Activates when drawdown exceeds 85%, reduces risk by 50%
122
+ - **Confidence Filtering**: Minimum 65% confidence required for trades
123
+ - **Volatility Control**: Reduces position sizes during high volatility (>1.5% ATR)
124
+ - **Volume Confirmation**: Requires volume above 20-period average for entry
125
+ - **Safe Zone Trading**: Prefers entries within support/resistance levels
126
+
127
+ ### Usage Instructions
128
+ ```python
129
+ from v7.backtest_v7 import CapitalPreservationBacktester
130
+
131
+ # Initialize with capital preservation settings
132
+ backtester = CapitalPreservationBacktester({
133
+ 'confidence_threshold': 0.65,
134
+ 'max_risk_per_trade': 0.15,
135
+ 'recovery_mode_threshold': 0.85,
136
+ 'volatility_adjustment': True,
137
+ 'dynamic_position_sizing': True
138
+ })
139
+
140
+ # Run backtest
141
+ results = backtester.backtest_capital_preservation(
142
+ risk_per_trade=0.10,
143
+ stop_loss=0.02,
144
+ take_profit=0.05
145
+ )
146
+ ```
147
+
148
+ ### Risk Management
149
+ - **Maximum Risk per Trade**: 15% of current capital
150
+ - **Recovery Mode Threshold**: 85% drawdown triggers reduced risk
151
+ - **Stop Trading Threshold**: 95% drawdown stops all trading
152
+ - **Profit Target Reset**: Returns to normal risk after 2% profit recovery
153
+ - **Volatility Filter**: Skips trades when volatility > 2%
154
+
155
+ ### Performance Comparison vs V6
156
+ | Metric | Romeo V6 | Romeo V7 | Improvement |
157
+ |--------|----------|----------|-------------|
158
+ | Total Return | 10.79% | 44.24% | +33.45% |
159
+ | Max Drawdown | Higher | 8.2% | Lower |
160
+ | Win Rate | 49.28% | 57.1% | +7.82% |
161
+ | Profit Factor | ~1.5 | 2.10 | +0.6 |
162
+ | Sharpe Ratio | N/A | 4.37 | N/A |
163
+ | Capital Preservation | Basic | Advanced | Major |
164
+
165
+ ### Training Data
166
+ - **Source**: Yahoo Finance GC=F (Gold Futures)
167
+ - **Timeframe**: 15-minute intraday data
168
+ - **Period**: Historical data with enhanced feature engineering
169
+ - **Augmentation**: Noise injection for robustness
170
+ - **Validation**: Out-of-sample testing with capital preservation metrics
171
+
172
+ ### Ethical Considerations
173
+ - Designed for capital preservation and risk management
174
+ - Includes multiple safety mechanisms to prevent excessive losses
175
+ - Recovery mechanisms help maintain trading capital during adverse conditions
176
+ - All results are historical backtests, not guaranteed future performance
177
+
178
+ ### Maintenance
179
+ - Retrain monthly with fresh data
180
+ - Monitor capital preservation metrics
181
+ - Adjust confidence thresholds based on market conditions
182
+ - Validate recovery mechanisms effectiveness
183
+
184
+ ---
185
+
186
+ *Romeo V7 represents a significant advancement in algorithmic trading with a focus on capital preservation and consistent profitability.*