metadata
license: etalab-2.0
pipeline_tag: image-segmentation
library_name: pytorch
tags:
- semantic segmentation
- pytorch
- landcover
model-index:
- name: FLAIR-HUB_LPIS-F_utae
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 21.755
name: mIoU
- type: OA
value: 85.282
name: Overall Accuracy
- type: IoU
value: 83.86
name: IoU building
- type: IoU
value: 78.38
name: IoU greenhouse
- type: IoU
value: 61.59
name: IoU swimming pool
- type: IoU
value: 61.59
name: IoU impervious surface
- type: IoU
value: 57.17
name: IoU pervious surface
- type: IoU
value: 62.94
name: IoU bare soil
- type: IoU
value: 90.35
name: IoU water
- type: IoU
value: 63.38
name: IoU snow
- type: IoU
value: 54.34
name: IoU herbaceous vegetation
- type: IoU
value: 57.14
name: IoU agricultural land
- type: IoU
value: 34.85
name: IoU plowed land
- type: IoU
value: 24.517
name: IoU vineyard
- type: IoU
value: 71.73
name: IoU deciduous
- type: IoU
value: 62.6
name: IoU coniferous
- type: IoU
value: 30.19
name: IoU brushwood
🌐 FLAIR-HUB Model Collection
- Trained on: FLAIR-HUB dataset 🔗
- Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
- Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
- Decoders: UNet, UPerNet
- Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
- Class nomenclature: 15 classes for LC, 23 classes for LPIS
🔍 Model: FLAIR-HUB_LPIS-F_utae
- Encoder: UTAE
- Decoder: UTAE
- Metrics:
- Params.: 0.9
General Informations
- Contact: flair@ign.fr
- Code repository: https://github.com/IGNF/FLAIR-HUB
- Paper: https://arxiv.org/abs/2506.07080
- Developed by: IGN
- Compute infrastructure:
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- License: Etalab 2.0
Training Config Hyperparameters
- Model architecture: UTAE
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- SENTINEL2_TS : [1,2,3,4,5,6,7,8,9,10]
Training Data
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700

Training Logging

Metrics
Metric | Value |
---|---|
mIoU | 21.75% |
Overall Accuracy | 85.28% |
F-score | 28.74% |
Precision | 28.98% |
Recall | 31.90% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
grasses | 43.13 | 60.27 | 64.86 | 56.28 |
wheat | 59.61 | 74.70 | 66.33 | 85.47 |
barley | 48.82 | 65.61 | 73.01 | 59.57 |
maize | 68.82 | 81.53 | 73.99 | 90.78 |
other cereals | 2.60 | 5.08 | 15.86 | 3.02 |
rice | 0.00 | 0.00 | 0.00 | 0.00 |
flax/hemp/tobacco | 0.00 | 0.00 | 0.00 | 0.00 |
sunflower | 27.98 | 43.73 | 48.70 | 39.68 |
rapeseed | 70.93 | 82.99 | 76.64 | 90.49 |
other oilseed crops | 0.00 | 0.00 | 0.00 | 0.00 |
soy | 12.37 | 22.02 | 14.49 | 45.84 |
other protein crops | 20.86 | 34.52 | 27.86 | 45.35 |
fodder legumes | 22.85 | 37.20 | 28.70 | 52.83 |
beetroots | 1.51 | 2.98 | 17.46 | 1.63 |
potatoes | 0.00 | 0.00 | 0.00 | 0.00 |
other arable crops | 10.06 | 18.28 | 13.58 | 27.97 |
vineyard | 24.52 | 39.38 | 37.92 | 40.96 |
olive groves | 0.00 | 0.00 | 0.00 | 0.00 |
fruits orchards | 0.00 | 0.00 | 0.00 | 0.00 |
nut orchards | 0.00 | 0.00 | 0.00 | 0.00 |
other permanent crops | 0.00 | 0.00 | 0.00 | 0.00 |
mixed crops | 0.03 | 0.05 | 15.72 | 0.03 |
background | 86.27 | 92.63 | 91.41 | 93.88 |
Inference
Aerial ROI

Inference ROI

Cite
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080