Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

whisper-large-adalora-r8-lr3e4-st20k

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.7135 0.3047 500 0.6747
0.5722 0.6094 1000 0.5673
0.5509 0.9141 1500 0.5341
0.5297 1.2188 2000 0.5177
0.4875 1.5235 2500 0.5086
0.5176 1.8282 3000 0.5004
0.4848 2.1328 3500 0.4968
0.441 2.4375 4000 0.4933
0.4647 2.7422 4500 0.4893
0.4568 3.0469 5000 0.4874
0.4316 3.3516 5500 0.4887
0.4314 3.6563 6000 0.4877
0.4422 3.9610 6500 0.4857
0.4148 4.2657 7000 0.4899
0.3603 4.5704 7500 0.4904
0.4077 4.8751 8000 0.4877
0.353 5.1798 8500 0.4999
0.3751 5.4845 9000 0.4973

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.3
  • Pytorch 2.7.0+cu118
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for HouraMor/whisper-large-adalora-r8-lr3e4-st20k

Adapter
(135)
this model