|
--- |
|
license: cc-by-nc-4.0 |
|
pipeline_tag: text-to-audio |
|
library_name: stable-audio-tools |
|
--- |
|
|
|
# AudioX |
|
|
|
## 🎧 AudioX: Diffusion Transformer for Anything-to-Audio Generation |
|
|
|
[TL;DR]: AudioX is a unified Diffusion Transformer model for Anything-to-Audio and Music Generation, capable of generating high-quality general audio and music, offering flexible natural language control, and seamlessly processing various modalities including text, video, image, music, and audio. |
|
|
|
### Links |
|
- **[Paper](https://arxiv.org/abs/2503.10522)**: Explore the research behind AudioX. |
|
- **[Project](https://zeyuet.github.io/AudioX/)**: Visit the official project page for more information and updates. |
|
- **[Code](https://github.com/ZeyueT/AudioX)**: Implementation of AudioX. |
|
|
|
|
|
## Clone the repository |
|
```bash |
|
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/HKUSTAudio/AudioX |
|
cd AudioX |
|
|
|
conda create -n AudioX python=3.8.20 |
|
conda activate AudioX |
|
pip install git+https://github.com/ZeyueT/AudioX.git |
|
conda install -c conda-forge ffmpeg libsndfile |
|
``` |
|
|
|
## Usage |
|
|
|
```py |
|
import torch |
|
import torchaudio |
|
from einops import rearrange |
|
from stable_audio_tools import get_pretrained_model |
|
from stable_audio_tools.inference.generation import generate_diffusion_cond |
|
from stable_audio_tools.data.utils import read_video, merge_video_audio |
|
from stable_audio_tools.data.utils import load_and_process_audio |
|
import os |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
# Download model |
|
model, model_config = get_pretrained_model("HKUSTAudio/AudioX") |
|
sample_rate = model_config["sample_rate"] |
|
sample_size = model_config["sample_size"] |
|
target_fps = model_config["video_fps"] |
|
seconds_start = 0 |
|
seconds_total = 10 |
|
|
|
model = model.to(device) |
|
|
|
# for video-to-music generation |
|
video_path = "video.mp4" |
|
text_prompt = "Generate music for the video" |
|
audio_path = None |
|
|
|
video_tensor = read_video(video_path, seek_time=0, duration=seconds_total, target_fps=target_fps) |
|
audio_tensor = load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total) |
|
|
|
conditioning = [{ |
|
"video_prompt": [video_tensor.unsqueeze(0)], |
|
"text_prompt": text_prompt, |
|
"audio_prompt": audio_tensor.unsqueeze(0), |
|
"seconds_start": seconds_start, |
|
"seconds_total": seconds_total |
|
}] |
|
|
|
# Generate stereo audio |
|
output = generate_diffusion_cond( |
|
model, |
|
steps=250, |
|
cfg_scale=7, |
|
conditioning=conditioning, |
|
sample_size=sample_size, |
|
sigma_min=0.3, |
|
sigma_max=500, |
|
sampler_type="dpmpp-3m-sde", |
|
device=device |
|
) |
|
|
|
# Rearrange audio batch to a single sequence |
|
output = rearrange(output, "b d n -> d (b n)") |
|
|
|
# Peak normalize, clip, convert to int16, and save to file |
|
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() |
|
torchaudio.save("output.wav", output, sample_rate) |
|
|
|
if video_path is not None and os.path.exists(video_path): |
|
merge_video_audio(video_path, "output.wav", "output.mp4", 0, seconds_total) |
|
|
|
``` |
|
|
|
|
|
|
|
## Citation |
|
If you find our work useful, please consider citing: |
|
|
|
``` |
|
@article{tian2025audiox, |
|
title={AudioX: Diffusion Transformer for Anything-to-Audio Generation}, |
|
author={Tian, Zeyue and Jin, Yizhu and Liu, Zhaoyang and Yuan, Ruibin and Tan, Xu and Chen, Qifeng and Xue, Wei and Guo, Yike}, |
|
journal={arXiv preprint arXiv:2503.10522}, |
|
year={2025} |
|
} |
|
``` |
|
|
|
|
|
## License |
|
|
|
Please follow [CC-BY-NC](./LICENSE). |