BaoLocTown's picture
Upload folder using huggingface_hub
660def1 verified
|
raw
history blame contribute delete
10.5 kB
---
datasets:
- GreenNode/GreenNode-Table-Markdown-Retrieval
language:
- vi
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
widget: []
metrics:
- InfoNCE
license: cc-by-4.0
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:** - GreenNode/GreenNode-Table-Markdown-Retrieval
- **Language:** Vietnamese
- **License:** cc-by-4.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the πŸ€— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
## Evaluation
### Table: Performance comparison of various models on GreenNodeTableRetrieval
Dataset: [GreenNode/GreenNode-Table-Markdown-Retrieval](https://huggingface.co/datasets/GreenNode/GreenNode-Table-Markdown-Retrieval-VN)
| Model Name | MAP@5 ↑ | MRR@5 ↑ | NDCG@5 ↑ | Recall@5 ↑ | Mean ↑ |
|--------------------------------------------|--------:|--------:|---------:|-----------:|-------:|
| **Multilingual Embedding models** | | | | | |
| me5_small | 33.75 | 33.75 | 35.68 | 41.49 | 36.17 |
| me5_large | 38.16 | 38.16 | 40.27 | 46.62 | 40.80 |
| M3-Embedding | 36.52 | 36.52 | 38.60 | 44.84 | 39.12 |
| OpenAI-embedding-v3 | 30.61 | 30.61 | 32.57 | 38.46 | 33.06 |
| **Vietnamese Embedding models (Prior Work)**| | | | | |
| halong-embedding | 32.15 | 32.15 | 34.13 | 40.09 | 34.63 |
| sup-SimCSE-VietNamese-phobert_base | 10.90 | 10.90 | 12.03 | 15.41 | 12.31 |
| vietnamese-bi-encoder | 13.61 | 13.61 | 14.63 | 17.68 | 14.89 |
| **GreenNode-Embedding (Our Work)** | | | | | |
| *M3-GN-VN* | _41.85_ | _41.85_ | _44.15_ | _57.05_ | _46.23_ |
| **M3-GN-VN-Mixed** | **42.08** | **42.08** | **44.33** | **51.06** | **44.89** |
### Table: Performance comparison of various models on ZacLegalTextRetrieval
Dataset: [GreenNode/zalo-ai-legal-text-retrieval-vn](https://huggingface.co/datasets/GreenNode/zalo-ai-legal-text-retrieval-vn)
| Model Name | MAP@5 ↑ | MRR@5 ↑ | NDCG@5 ↑ | Recall@5 ↑ | Mean ↑ |
|--------------------------------------------|--------:|--------:|---------:|-----------:|-------:|
| **Multilingual Embedding models** | | | | | |
| me5_small | 54.68 | 54.37 | 58.32 | 69.16 | 59.13 |
| me5_large | 60.14 | 59.62 | 64.17 | 76.02 | 64.99 |
| *M3-Embedding* | _69.34_ | _68.96_ | _73.70_ | _86.68_ | _74.67_ |
| OpenAI-embedding-v3 | 38.68 | 38.80 | 41.53 | 49.94 | 41.74 |
| **Vietnamese Embedding models (Prior Work)**| | | | | |
| halong-embedding | 52.57 | 52.28 | 56.64 | 68.72 | 57.55 |
| sup-SimCSE-VietNamese-phobert_base | 25.15 | 25.07 | 27.81 | 35.79 | 28.46 |
| vietnamese-bi-encoder | 54.88 | 54.47 | 59.10 | 79.51 | 61.99 |
| **GreenNode-Embedding (Our Work)** | | | | | |
| M3-GN-VN | 65.03 | 64.80 | 69.19 | 81.66 | 70.17 |
| **M3-GN-VN-Mixed** | **69.75** | **69.28** | **74.01** | **86.74** | **74.95** |
### Table: Performance comparison of various models on VieQuADRetrieval
Dataset: [taidng/UIT-ViQuAD2.0](https://huggingface.co/datasets/taidng/UIT-ViQuAD2.0)
| Model Name | MAP@5 ↑ | MRR@5 ↑ | NDCG@5 ↑ | Recall@5 ↑ | Mean ↑ |
|--------------------------------------------|--------:|--------:|---------:|-----------:|-------:|
| **Multilingual Embedding models** | | | | | |
| me5_small | 40.42 | 69.21 | 50.05 | 50.71 | 52.60 |
| me5_large | 44.18 | 67.81 | 53.04 | 55.86 | 55.22 |
| *M3-Embedding* | _44.08_ | _72.28_ | _54.07_ | _56.01_ | _56.61_ |
| OpenAI-embedding-v3 | 32.39 | 53.97 | 40.48 | 43.02 | 42.47 |
| **Vietnamese Embedding models (Prior Work)**| | | | | |
| halong-embedding | 39.42 | 62.31 | 48.63 | 52.73 | 50.77 |
| sup-SimCSE-VietNamese-phobert_base | 20.45 | 35.99 | 26.73 | 29.59 | 28.19 |
| vietnamese-bi-encoder | 31.89 | 54.62 | 40.26 | 42.53 | 42.33 |
| **GreenNode-Embedding (Our Work)** | | | | | |
| M3-GN-VN | 42.85 | 71.98 | 52.90 | 54.25 | 55.50 |
| **M3-GN-VN-Mixed** | **44.20** | **72.64** | **54.30** | **56.30** | **56.86** |
### Table: Performance comparison of various models on GreenNodeTableRetrieval (Hit Rate)
| Model Name | Hit Rate@1 ↑ | Hit Rate@5 ↑ | Hit Rate@10 ↑ | Hit Rate@20 ↑ |
|------------------------------------------------|--------------|--------------|---------------|---------------|
| **Multilingual Embedding models** | | | | |
| me5_small | 38.99 | 53.37 | 59.28 | 65.09 |
| me5_large | 43.99 | 59.74 | 65.74 | 71.59 |
| bge-m3 | 42.15 | 57.00 | 63.05 | 68.96 |
| OpenAI-embedding-v3 | - | - | - | - |
| **Vietnamese Embedding models (Prior Work)** | | | | |
| halong-embedding | 37.22 | 52.49 | 58.57 | 64.64 |
| sup-SimCSE-VietNamese-phobert_base | 14.00 | 24.74 | 30.32 | 36.44 |
| vietnamese-bi-encoder | 16.89 | 25.94 | 30.50 | 35.70 |
| **GreenNode-Embedding (Our Work)** | | | | |
| **M3-GN-VN** | **48.31** | **64.60** | **70.83** | **76.46** |
| *M3-GN-VN-Mixed* | _47.94_ | _64.24_ | _70.43_ | _76.14_ |
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->