|
|
|
--- |
|
datasets: |
|
- GreenNode/GreenNode-Table-Markdown-Retrieval |
|
language: |
|
- vi |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
widget: [] |
|
metrics: |
|
- InfoNCE |
|
license: cc-by-4.0 |
|
--- |
|
|
|
# SentenceTransformer |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** - GreenNode/GreenNode-Table-Markdown-Retrieval |
|
- **Language:** Vietnamese |
|
- **License:** cc-by-4.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the π€ Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'The weather is lovely today.', |
|
"It's so sunny outside!", |
|
'He drove to the stadium.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
## Evaluation |
|
### Table: Performance comparison of various models on GreenNodeTableRetrieval |
|
Dataset: [GreenNode/GreenNode-Table-Markdown-Retrieval](https://huggingface.co/datasets/GreenNode/GreenNode-Table-Markdown-Retrieval-VN) |
|
|
|
| Model Name | MAP@5 β | MRR@5 β | NDCG@5 β | Recall@5 β | Mean β | |
|
|--------------------------------------------|--------:|--------:|---------:|-----------:|-------:| |
|
| **Multilingual Embedding models** | | | | | | |
|
| me5_small | 33.75 | 33.75 | 35.68 | 41.49 | 36.17 | |
|
| me5_large | 38.16 | 38.16 | 40.27 | 46.62 | 40.80 | |
|
| M3-Embedding | 36.52 | 36.52 | 38.60 | 44.84 | 39.12 | |
|
| OpenAI-embedding-v3 | 30.61 | 30.61 | 32.57 | 38.46 | 33.06 | |
|
| **Vietnamese Embedding models (Prior Work)**| | | | | | |
|
| halong-embedding | 32.15 | 32.15 | 34.13 | 40.09 | 34.63 | |
|
| sup-SimCSE-VietNamese-phobert_base | 10.90 | 10.90 | 12.03 | 15.41 | 12.31 | |
|
| vietnamese-bi-encoder | 13.61 | 13.61 | 14.63 | 17.68 | 14.89 | |
|
| **GreenNode-Embedding (Our Work)** | | | | | | |
|
| *M3-GN-VN* | _41.85_ | _41.85_ | _44.15_ | _57.05_ | _46.23_ | |
|
| **M3-GN-VN-Mixed** | **42.08** | **42.08** | **44.33** | **51.06** | **44.89** | |
|
### Table: Performance comparison of various models on ZacLegalTextRetrieval |
|
Dataset: [GreenNode/zalo-ai-legal-text-retrieval-vn](https://huggingface.co/datasets/GreenNode/zalo-ai-legal-text-retrieval-vn) |
|
|
|
| Model Name | MAP@5 β | MRR@5 β | NDCG@5 β | Recall@5 β | Mean β | |
|
|--------------------------------------------|--------:|--------:|---------:|-----------:|-------:| |
|
| **Multilingual Embedding models** | | | | | | |
|
| me5_small | 54.68 | 54.37 | 58.32 | 69.16 | 59.13 | |
|
| me5_large | 60.14 | 59.62 | 64.17 | 76.02 | 64.99 | |
|
| *M3-Embedding* | _69.34_ | _68.96_ | _73.70_ | _86.68_ | _74.67_ | |
|
| OpenAI-embedding-v3 | 38.68 | 38.80 | 41.53 | 49.94 | 41.74 | |
|
| **Vietnamese Embedding models (Prior Work)**| | | | | | |
|
| halong-embedding | 52.57 | 52.28 | 56.64 | 68.72 | 57.55 | |
|
| sup-SimCSE-VietNamese-phobert_base | 25.15 | 25.07 | 27.81 | 35.79 | 28.46 | |
|
| vietnamese-bi-encoder | 54.88 | 54.47 | 59.10 | 79.51 | 61.99 | |
|
| **GreenNode-Embedding (Our Work)** | | | | | | |
|
| M3-GN-VN | 65.03 | 64.80 | 69.19 | 81.66 | 70.17 | |
|
| **M3-GN-VN-Mixed** | **69.75** | **69.28** | **74.01** | **86.74** | **74.95** | |
|
### Table: Performance comparison of various models on VieQuADRetrieval |
|
Dataset: [taidng/UIT-ViQuAD2.0](https://huggingface.co/datasets/taidng/UIT-ViQuAD2.0) |
|
|
|
| Model Name | MAP@5 β | MRR@5 β | NDCG@5 β | Recall@5 β | Mean β | |
|
|--------------------------------------------|--------:|--------:|---------:|-----------:|-------:| |
|
| **Multilingual Embedding models** | | | | | | |
|
| me5_small | 40.42 | 69.21 | 50.05 | 50.71 | 52.60 | |
|
| me5_large | 44.18 | 67.81 | 53.04 | 55.86 | 55.22 | |
|
| *M3-Embedding* | _44.08_ | _72.28_ | _54.07_ | _56.01_ | _56.61_ | |
|
| OpenAI-embedding-v3 | 32.39 | 53.97 | 40.48 | 43.02 | 42.47 | |
|
| **Vietnamese Embedding models (Prior Work)**| | | | | | |
|
| halong-embedding | 39.42 | 62.31 | 48.63 | 52.73 | 50.77 | |
|
| sup-SimCSE-VietNamese-phobert_base | 20.45 | 35.99 | 26.73 | 29.59 | 28.19 | |
|
| vietnamese-bi-encoder | 31.89 | 54.62 | 40.26 | 42.53 | 42.33 | |
|
| **GreenNode-Embedding (Our Work)** | | | | | | |
|
| M3-GN-VN | 42.85 | 71.98 | 52.90 | 54.25 | 55.50 | |
|
| **M3-GN-VN-Mixed** | **44.20** | **72.64** | **54.30** | **56.30** | **56.86** | |
|
|
|
### Table: Performance comparison of various models on GreenNodeTableRetrieval (Hit Rate) |
|
|
|
| Model Name | Hit Rate@1 β | Hit Rate@5 β | Hit Rate@10 β | Hit Rate@20 β | |
|
|------------------------------------------------|--------------|--------------|---------------|---------------| |
|
| **Multilingual Embedding models** | | | | | |
|
| me5_small | 38.99 | 53.37 | 59.28 | 65.09 | |
|
| me5_large | 43.99 | 59.74 | 65.74 | 71.59 | |
|
| bge-m3 | 42.15 | 57.00 | 63.05 | 68.96 | |
|
| OpenAI-embedding-v3 | - | - | - | - | |
|
| **Vietnamese Embedding models (Prior Work)** | | | | | |
|
| halong-embedding | 37.22 | 52.49 | 58.57 | 64.64 | |
|
| sup-SimCSE-VietNamese-phobert_base | 14.00 | 24.74 | 30.32 | 36.44 | |
|
| vietnamese-bi-encoder | 16.89 | 25.94 | 30.50 | 35.70 | |
|
| **GreenNode-Embedding (Our Work)** | | | | | |
|
| **M3-GN-VN** | **48.31** | **64.60** | **70.83** | **76.46** | |
|
| *M3-GN-VN-Mixed* | _47.94_ | _64.24_ | _70.43_ | _76.14_ | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.3.1 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |