metadata
library_name: peft
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
model-index:
- name: whisper-turbo-tr_All_datasets_finetune_4
results: []
whisper-turbo-tr_All_datasets_finetune_4
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2189
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1902 | 0.9186 | 1500 | 0.3348 |
0.097 | 1.8371 | 3000 | 0.2756 |
0.0284 | 2.7557 | 4500 | 0.2189 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.5.1
- Datasets 3.0.0
- Tokenizers 0.21.1