metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:72
- loss:BatchAllTripletLoss
base_model: cl-nagoya/sup-simcse-ja-base
widget:
- source_sentence: 打放し型枠(B種)
sentences:
- 埋込み(B種)(手間)
- 埋込み(C種)(手間)
- 盛土A種
- source_sentence: 埋込み[B種]
sentences:
- 打放し型枠(A種)
- 盛土(C種)(手間)
- 埋戻し[C種]
- source_sentence: 盛土[C種]
sentences:
- 埋込み[C種]
- 盛土(A種)
- 盛土[A種]
- source_sentence: 埋戻し[A種]
sentences:
- 打放し型枠C種
- 打放し型枠(C種)(損料・手間)
- 盛土[B種]
- source_sentence: 埋込み(B種)(損料・手間)
sentences:
- 埋戻し(A種)(損料)
- 埋戻し(C種)(損料・手間)
- 埋戻し(B種)(手間)
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on cl-nagoya/sup-simcse-ja-base
This is a sentence-transformers model finetuned from cl-nagoya/sup-simcse-ja-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cl-nagoya/sup-simcse-ja-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v0_9_11")
# Run inference
sentences = [
'埋込み(B種)(損料・手間)',
'埋戻し(A種)(損料)',
'埋戻し(B種)(手間)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 72 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 72 samples:
sentence label type string int details - min: 11 tokens
- mean: 16.21 tokens
- max: 27 tokens
- 0: ~0.50%
- 1: ~0.50%
- 2: ~0.50%
- 3: ~0.50%
- 4: ~0.50%
- 5: ~0.50%
- 6: ~0.50%
- 7: ~0.50%
- 8: ~0.50%
- 9: ~0.50%
- 10: ~0.50%
- 11: ~0.50%
- 12: ~0.50%
- 13: ~0.50%
- 14: ~0.50%
- 15: ~0.50%
- 16: ~0.50%
- 17: ~0.50%
- 18: ~0.50%
- 19: ~0.50%
- 20: ~0.50%
- 21: ~0.50%
- 22: ~0.50%
- 23: ~0.50%
- 24: ~0.50%
- 25: ~0.50%
- 26: ~0.50%
- 27: ~0.50%
- 28: ~0.50%
- 29: ~0.50%
- 30: ~0.50%
- 31: ~0.50%
- 32: ~0.50%
- 33: ~0.50%
- 34: ~0.50%
- 35: ~0.50%
- 36: ~0.50%
- 37: ~0.50%
- 38: ~0.50%
- 39: ~0.50%
- 40: ~0.50%
- 41: ~0.50%
- 42: ~0.50%
- 43: ~0.50%
- 44: ~0.60%
- 45: ~0.70%
- 46: ~0.50%
- 47: ~0.50%
- 48: ~0.50%
- 49: ~0.50%
- 50: ~0.50%
- 51: ~0.50%
- 52: ~0.50%
- 53: ~0.50%
- 54: ~0.50%
- 55: ~0.50%
- 56: ~0.50%
- 57: ~0.80%
- 58: ~0.50%
- 59: ~0.50%
- 60: ~0.50%
- 61: ~0.50%
- 62: ~0.50%
- 63: ~0.50%
- 64: ~0.50%
- 65: ~0.50%
- 66: ~0.50%
- 67: ~0.50%
- 68: ~0.50%
- 69: ~0.50%
- 70: ~0.50%
- 71: ~0.50%
- 72: ~0.50%
- 73: ~0.50%
- 74: ~0.50%
- 75: ~0.50%
- 76: ~0.50%
- 77: ~0.50%
- 78: ~0.50%
- 79: ~0.50%
- 80: ~0.50%
- 81: ~0.50%
- 82: ~0.50%
- 83: ~0.50%
- 84: ~0.50%
- 85: ~0.50%
- 86: ~0.50%
- 87: ~0.50%
- 88: ~0.60%
- 89: ~0.50%
- 90: ~0.50%
- 91: ~0.50%
- 92: ~0.50%
- 93: ~0.50%
- 94: ~0.50%
- 95: ~1.20%
- 96: ~1.70%
- 97: ~3.90%
- 98: ~0.50%
- 99: ~0.50%
- 100: ~0.50%
- 101: ~0.60%
- 102: ~0.50%
- 103: ~0.50%
- 104: ~0.50%
- 105: ~0.50%
- 106: ~0.50%
- 107: ~1.20%
- 108: ~0.50%
- 109: ~0.50%
- 110: ~0.50%
- 111: ~0.50%
- 112: ~0.50%
- 113: ~0.50%
- 114: ~0.50%
- 115: ~0.50%
- 116: ~0.50%
- 117: ~0.50%
- 118: ~0.50%
- 119: ~0.50%
- 120: ~0.50%
- 121: ~0.50%
- 122: ~0.50%
- 123: ~0.50%
- 124: ~0.50%
- 125: ~0.50%
- 126: ~0.50%
- 127: ~0.50%
- 128: ~0.50%
- 129: ~0.50%
- 130: ~0.50%
- 131: ~0.50%
- 132: ~0.50%
- 133: ~0.50%
- 134: ~0.50%
- 135: ~0.50%
- 136: ~0.50%
- 137: ~0.50%
- 138: ~0.50%
- 139: ~0.50%
- 140: ~0.50%
- 141: ~0.50%
- 142: ~0.50%
- 143: ~0.50%
- 144: ~0.50%
- 145: ~0.50%
- 146: ~0.70%
- 147: ~0.50%
- 148: ~3.10%
- 149: ~0.50%
- 150: ~2.30%
- 151: ~0.50%
- 152: ~0.50%
- 153: ~0.50%
- 154: ~0.50%
- 155: ~0.50%
- 156: ~0.50%
- 157: ~0.50%
- 158: ~0.50%
- 159: ~0.50%
- 160: ~0.50%
- 161: ~0.50%
- 162: ~0.50%
- 163: ~0.50%
- 164: ~0.50%
- 165: ~0.50%
- 166: ~0.50%
- 167: ~0.50%
- 168: ~0.50%
- 169: ~0.50%
- 170: ~0.50%
- 171: ~0.50%
- 172: ~0.50%
- 173: ~0.50%
- 174: ~0.50%
- 175: ~0.50%
- 176: ~0.50%
- 177: ~0.10%
- Samples:
sentence label 科目:コンクリート。名称:免震基礎天端グラウト注入。
0
科目:コンクリート。名称:免震基礎天端グラウト注入。
0
科目:コンクリート。名称:免震基礎天端グラウト注入。
0
- Loss:
BatchAllTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 512per_device_eval_batch_size
: 512learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 250warmup_ratio
: 0.1fp16
: Truebatch_sampler
: group_by_label
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 250max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: group_by_labelmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
10.0 | 10 | 1.6508 |
20.0 | 20 | 1.2554 |
30.0 | 30 | 0.8495 |
40.0 | 40 | 0.7182 |
50.0 | 50 | 0.6614 |
60.0 | 60 | 0.575 |
70.0 | 70 | 0.5027 |
80.0 | 80 | 0.32 |
90.0 | 90 | 0.1543 |
100.0 | 100 | 0.0102 |
110.0 | 110 | 0.012 |
120.0 | 120 | 0.1164 |
130.0 | 130 | 0.0 |
140.0 | 140 | 0.0 |
150.0 | 150 | 0.0 |
160.0 | 160 | 0.0157 |
170.0 | 170 | 0.0794 |
180.0 | 180 | 0.0 |
190.0 | 190 | 0.0 |
200.0 | 200 | 0.0141 |
210.0 | 210 | 0.0 |
220.0 | 220 | 0.0 |
230.0 | 230 | 0.1115 |
240.0 | 240 | 0.0 |
250.0 | 250 | 0.0 |
260.0 | 260 | 0.0 |
270.0 | 270 | 0.0 |
280.0 | 280 | 0.0 |
290.0 | 290 | 0.0 |
300.0 | 300 | 0.0 |
310.0 | 310 | 0.0 |
320.0 | 320 | 0.0 |
330.0 | 330 | 0.0 |
340.0 | 340 | 0.0 |
350.0 | 350 | 0.0 |
360.0 | 360 | 0.0197 |
370.0 | 370 | 0.0649 |
380.0 | 380 | 0.0 |
390.0 | 390 | 0.0 |
400.0 | 400 | 0.0 |
410.0 | 410 | 0.0 |
420.0 | 420 | 0.0 |
430.0 | 430 | 0.0 |
440.0 | 440 | 0.0 |
450.0 | 450 | 0.0 |
460.0 | 460 | 0.0 |
470.0 | 470 | 0.0 |
480.0 | 480 | 0.0 |
490.0 | 490 | 0.0 |
500.0 | 500 | 0.0 |
3.1842 | 100 | 0.6748 |
6.3684 | 200 | 0.5883 |
9.5526 | 300 | 0.5815 |
12.7368 | 400 | 0.5338 |
16.1053 | 500 | 0.5498 |
19.2895 | 600 | 0.5359 |
22.4737 | 700 | 0.5359 |
25.6579 | 800 | 0.4893 |
29.0263 | 900 | 0.4665 |
32.2105 | 1000 | 0.4205 |
35.3947 | 1100 | 0.4383 |
38.5789 | 1200 | 0.4552 |
41.7632 | 1300 | 0.4003 |
45.1316 | 1400 | 0.3816 |
48.3158 | 1500 | 0.3744 |
51.5 | 1600 | 0.3504 |
54.6842 | 1700 | 0.359 |
58.0526 | 1800 | 0.3019 |
61.2368 | 1900 | 0.3109 |
64.4211 | 2000 | 0.3151 |
67.6053 | 2100 | 0.3292 |
70.7895 | 2200 | 0.2813 |
74.1579 | 2300 | 0.2697 |
77.3421 | 2400 | 0.1975 |
80.5263 | 2500 | 0.2492 |
83.7105 | 2600 | 0.2608 |
87.0789 | 2700 | 0.2401 |
90.2632 | 2800 | 0.2265 |
93.4474 | 2900 | 0.2032 |
96.6316 | 3000 | 0.2368 |
99.8158 | 3100 | 0.2066 |
103.1842 | 3200 | 0.1558 |
106.3684 | 3300 | 0.2029 |
109.5526 | 3400 | 0.244 |
112.7368 | 3500 | 0.1894 |
116.1053 | 3600 | 0.193 |
119.2895 | 3700 | 0.1769 |
122.4737 | 3800 | 0.1821 |
125.6579 | 3900 | 0.0912 |
129.0263 | 4000 | 0.1834 |
132.2105 | 4100 | 0.1391 |
135.3947 | 4200 | 0.1718 |
138.5789 | 4300 | 0.1585 |
141.7632 | 4400 | 0.1829 |
145.1316 | 4500 | 0.1246 |
148.3158 | 4600 | 0.1327 |
151.5 | 4700 | 0.1396 |
154.6842 | 4800 | 0.1028 |
158.0526 | 4900 | 0.0907 |
161.2368 | 5000 | 0.1179 |
164.4211 | 5100 | 0.1496 |
167.6053 | 5200 | 0.1156 |
170.7895 | 5300 | 0.1148 |
174.1579 | 5400 | 0.1275 |
177.3421 | 5500 | 0.1354 |
180.5263 | 5600 | 0.1334 |
183.7105 | 5700 | 0.0874 |
187.0789 | 5800 | 0.0922 |
190.2632 | 5900 | 0.1109 |
193.4474 | 6000 | 0.0708 |
196.6316 | 6100 | 0.0943 |
199.8158 | 6200 | 0.1164 |
203.1842 | 6300 | 0.0785 |
206.3684 | 6400 | 0.0853 |
209.5526 | 6500 | 0.0674 |
212.7368 | 6600 | 0.1009 |
216.1053 | 6700 | 0.0846 |
219.2895 | 6800 | 0.078 |
222.4737 | 6900 | 0.0958 |
225.6579 | 7000 | 0.0811 |
229.0263 | 7100 | 0.0452 |
232.2105 | 7200 | 0.0705 |
235.3947 | 7300 | 0.0664 |
238.5789 | 7400 | 0.0501 |
241.7632 | 7500 | 0.0696 |
245.1316 | 7600 | 0.0736 |
248.3158 | 7700 | 0.08 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.50.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchAllTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}