BrtGPT-Conversation-1.5
We are introducing our new conversation model: "BrtGPT-Conversation-1.5". This model is trained on 20.000+ multi-turn, system-user-assistant conversations (Almost 3x of BrtGPT-Conversation-1.1). You can use with System prompt but model can generate weird answers so often!
Use
You can use with this code (stream and dialouge):
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
from threading import Thread
model_id = "Bertug1911/BrtGPT-Conversation-1.5"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
model.eval().to("cuda" if torch.cuda.is_available() else "cpu")
def clean(text):
return text.replace(" ", "").replace("Ä ", " ").replace("ÄŠ", "\n")
chat_history = [
{
"role": "system",
"content": (
"You are hepfull LLM."
)
}
]
while True:
try:
question = input("\nQuestion (write "q" for exit.): ")
if question.strip().lower() in ["q", "quit", "exit"]:
print("Exiting...")
break
chat_history.append({"role": "user", "content": question})
inputs = tokenizer.apply_chat_template(
chat_history,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
def generate():
model.generate(
input_ids=inputs,
streamer=streamer,
max_new_tokens=256,
do_sample=True,
top_k=10,
temperature=0.1,
)
thread = Thread(target=generate)
thread.start()
print("🤖 Answer:", end=" ", flush=True)
full_answer = ""
for token in streamer:
cleaned = clean(token)
full_answer += cleaned
print(cleaned, end="", flush=True)
chat_history.append({"role": "assistant", "content": full_answer})
except KeyboardInterrupt:
print("\nStoped.")
break
Limits
Model is not trained on any code, math or heavy PHD level science data!
Model can generate political answers, be carefull!
Training details
Model is trained on 1x RTX 4050 Laptop GPU for few hours.
Contact
- Downloads last month
- 7