|
--- |
|
license: mit |
|
tags: |
|
- speaker |
|
- speaker-diarization |
|
- meeting |
|
- wavlm |
|
- wespeaker |
|
- diarizen |
|
- pyannote |
|
- pyannote-audio-pipeline |
|
--- |
|
|
|
## Overview |
|
This hub features the pre-trained model by [DiariZen](https://github.com/BUTSpeechFIT/DiariZen). The EEND component is built upon WavLM-Base+ and Conformer layers. The model was trained on far-field, single-channel audio data from the public datasets AMI, AISHELL-4, and AliMeeting. Please follow the [instructions](https://github.com/BUTSpeechFIT/DiariZen) for before use. |
|
|
|
|
|
## Usage |
|
```python |
|
from diarizen.pipelines.inference import DiariZenPipeline |
|
|
|
# load pre-trained model |
|
diar_pipeline = DiariZenPipeline.from_pretrained("BUT-FIT/diarizen-meeting-base") |
|
# apply diarization pipeline |
|
diar_results = diar_pipeline('audio.wav') |
|
|
|
# print results |
|
for turn, _, speaker in diar_results.itertracks(yield_label=True): |
|
print(f"start={turn.start:.1f}s stop={turn.end:.1f}s speaker_{speaker}") |
|
|
|
# load pre-trained model and save RTTM result |
|
diar_pipeline = DiariZenPipeline.from_pretrained( |
|
"BUT-FIT/diarizen-meeting-base", |
|
rttm_out_dir='.' |
|
) |
|
# apply diarization pipeline |
|
diar_results = diar_pipeline('audio.wav', sess_name='session_name') |
|
``` |
|
|
|
## Results (SDM) |
|
``` |
|
Diarization Error Rate (DER): |
|
-------------------------------------------------------------- |
|
System Collar AMI AISHELL-4 AliMeeting |
|
-------------------------------------------------------------- |
|
Pyannote3 0s 21.1 13.9 22.8 |
|
0.25s 13.7 7.7 13.6 |
|
-------------------------------------------------------------- |
|
Proposed 0s 15.6 12.0 17.7 |
|
0.25s 10.2 6.1 10.2 |
|
-------------------------------------------------------------- |
|
``` |
|
|
|
## Citation |
|
``` |
|
@inproceedings{han2025leveraging, |
|
title={Leveraging self-supervised learning for speaker diarization}, |
|
author={Han, Jiangyu and Landini, Federico and Rohdin, Johan and Silnova, Anna and Diez, Mireia and Burget, Luk{\'a}{\v{s}}}, |
|
booktitle={Proc. ICASSP}, |
|
year={2025} |
|
} |
|
``` |