mmBERT-small reranker (LambdaLoss NDCG2++)
This is a Cross Encoder model finetuned from jhu-clsp/mmBERT-small on the product_similarity_dataset dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: jhu-clsp/mmBERT-small
- Maximum Sequence Length: 256 tokens
- Number of Output Labels: 1 label
- Training Dataset:
- Languages: multilingual, fr, de, zh, ru, pl, es, it, ja, ar, hi, pt, nl
- License: mit
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Warning : This model is just starting training, this is just a checkpoint
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("Antix5/product-reranker-mmBERT-small")
# Get scores for pairs of texts
pairs = [
['Milk Belgian Chocolate', 'Milk Chocolate Flavor'],
]
scores = model.predict(pairs)
print(scores.shape)
# (3,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'70 % Cacao Dark Chocolate With Coconut',
[
'DRK CHCLT BAR, COCONUT',
'Coconut Cream Filled Dark Chocolate',
'Blueberry & Dark Chocolate With Chia',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
rerank
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": false }
Metric | Value |
---|---|
map | 0.9562 (-0.0359) |
mrr@10 | 0.9561 (-0.0385) |
ndcg@10 | 0.9656 (-0.0291) |
Training Details
Training Dataset
product_similarity_dataset
- Dataset: product_similarity_dataset at 7aba3ef
- Size: 9,358 training samples
- Columns:
query
,documents
, andscores
- Approximate statistics based on the first 1000 samples:
query documents scores type string list list details - min: 6 characters
- mean: 57.18 characters
- max: 197 characters
- size: 16 elements
- size: 16 elements
- Samples:
query documents scores Premier 26764 Car Spinner, Santa, 25 by 19-1/2-Inch
['Premier 26764 Tourbillon pour voiture, Santa, 25 x 19-1/2 pouces', 'BNTS, ЧИПСЫ ИЗ ФАСОЛИ NV И МОРСКАЯ СОЛЬ', 'Beanitos, Чипс из фасоли navy, Сыр на чо', 'K2 स्केट व्हील (4 का पैक)', 'BLST BALL МЯЧ ДЛЯ КИКА (2 ШТ.)', ...]
[1.0, 0.0, 0.0, 0.0, 0.0, ...]
Juice Cocktail Blend From Concentrate, Apple Blueberry
['Mélange de cocktail de jus à base de concentré, pomme myrtille', 'Orange Juice From Concentrate With Pulp', 'Tropical Juice Splash From Concentrate', 'BLUEBERRY JUICE DRNK', 'APPLE NECTAR JUICE DRINK FROM CNCNTRT', ...]
[1.0, 0.4, 0.35, 0.65, 0.55, ...]
Fruity Sour Strips Fruit-Flavored Chewy Candy
['Fruity Sour Strips Fruit-Flavored Chewy Candy', 'SR CANDIES, FRUIT SOUR', 'Fruit Candy, Fruit', 'FRT SNCK TUTTI FRUITY', 'Fruit Strips, Peach Passion', ...]
[1.0, 0.95, 0.7, 0.55, 0.9, ...]
- Loss:
LambdaLoss
with these parameters:{ "weighting_scheme": "sentence_transformers.cross_encoder.losses.LambdaLoss.NDCGLoss2PPScheme", "k": null, "sigma": 1.0, "eps": 1e-10, "reduction_log": "binary", "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepslearning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | rerank_ndcg@10 |
---|---|---|---|
0.0009 | 1 | 0.1261 | - |
0.0171 | 20 | 0.1193 | - |
0.0342 | 40 | 0.0767 | - |
0.0513 | 60 | 0.0563 | - |
0.0684 | 80 | 0.055 | - |
0.0855 | 100 | 0.0546 | - |
0.1026 | 120 | 0.0483 | - |
0.1197 | 140 | 0.0489 | - |
0.1368 | 160 | 0.049 | - |
0.1538 | 180 | 0.0463 | - |
0.1709 | 200 | 0.046 | 0.9419 (-0.0528) |
0.1880 | 220 | 0.0411 | - |
0.2051 | 240 | 0.0398 | - |
0.2222 | 260 | 0.0456 | - |
0.2393 | 280 | 0.0463 | - |
0.2564 | 300 | 0.043 | - |
0.2735 | 320 | 0.0447 | - |
0.2906 | 340 | 0.0419 | - |
0.3077 | 360 | 0.0403 | - |
0.3248 | 380 | 0.0429 | - |
0.3419 | 400 | 0.0423 | 0.9653 (-0.0294) |
0.3590 | 420 | 0.0406 | - |
0.3761 | 440 | 0.041 | - |
0.3932 | 460 | 0.0427 | - |
0.4103 | 480 | 0.0376 | - |
0.4274 | 500 | 0.0408 | - |
0.4444 | 520 | 0.0394 | - |
0.4615 | 540 | 0.0423 | - |
0.4786 | 560 | 0.0403 | - |
0.4957 | 580 | 0.0336 | - |
0.5128 | 600 | 0.039 | 0.9668 (-0.0279) |
0.5299 | 620 | 0.0389 | - |
0.5470 | 640 | 0.0376 | - |
0.5641 | 660 | 0.0422 | - |
0.5812 | 680 | 0.0406 | - |
0.5983 | 700 | 0.037 | - |
0.6154 | 720 | 0.0368 | - |
0.6325 | 740 | 0.0365 | - |
0.6496 | 760 | 0.0356 | - |
0.6667 | 780 | 0.0359 | - |
0.6838 | 800 | 0.0368 | 0.9646 (-0.0301) |
0.7009 | 820 | 0.0342 | - |
0.7179 | 840 | 0.0376 | - |
0.7350 | 860 | 0.036 | - |
0.7521 | 880 | 0.0331 | - |
0.7692 | 900 | 0.0341 | - |
0.7863 | 920 | 0.0372 | - |
0.8034 | 940 | 0.0361 | - |
0.8205 | 960 | 0.0352 | - |
0.8376 | 980 | 0.0351 | - |
0.8547 | 1000 | 0.0348 | 0.9620 (-0.0327) |
0.8718 | 1020 | 0.0341 | - |
0.8889 | 1040 | 0.0354 | - |
0.9060 | 1060 | 0.035 | - |
0.9231 | 1080 | 0.0325 | - |
0.9402 | 1100 | 0.038 | - |
0.9573 | 1120 | 0.0376 | - |
0.9744 | 1140 | 0.0335 | - |
0.9915 | 1160 | 0.0375 | - |
-1 | -1 | - | 0.9656 (-0.0291) |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 2.20.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
LambdaLoss
@inproceedings{wang2018lambdaloss,
title={The LambdaLoss Framework for Ranking Metric Optimization},
author={Wang, Xuanhui and Li, Cheng and Golbandi, Nadav and Bendersky, Michael and Najork, Marc},
booktitle={Proceedings of the 27th ACM international conference on information and knowledge management},
pages={1313--1322},
year={2018}
}
- Downloads last month
- 33
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Antix5/product-reranker-mmBERT-small
Base model
jhu-clsp/mmBERT-smallDataset used to train Antix5/product-reranker-mmBERT-small
Evaluation results
- Map on rerankself-reported0.956
- Mrr@10 on rerankself-reported0.956
- Ndcg@10 on rerankself-reported0.966