results_indobert-large-p1_preprocessing_without_stopword
This model is a fine-tuned version of indobenchmark/indobert-large-p1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7076
- Accuracy: 0.7682
- Precision: 0.7633
- Recall: 0.7817
- F1: 0.7658
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.6575 | 1.0 | 111 | 1.5425 | 0.2977 | 0.4401 | 0.2546 | 0.2055 |
1.3195 | 2.0 | 222 | 0.9592 | 0.6659 | 0.6667 | 0.6679 | 0.6596 |
0.8309 | 3.0 | 333 | 0.6948 | 0.7614 | 0.7602 | 0.7677 | 0.7618 |
0.6519 | 4.0 | 444 | 0.7061 | 0.7523 | 0.7491 | 0.7687 | 0.7534 |
0.5121 | 5.0 | 555 | 0.7076 | 0.7682 | 0.7633 | 0.7817 | 0.7658 |
0.3865 | 6.0 | 666 | 0.7490 | 0.7523 | 0.7483 | 0.7657 | 0.7526 |
0.2813 | 7.0 | 777 | 0.8366 | 0.7568 | 0.7584 | 0.7681 | 0.7588 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Model tree for Alfanatasya/results_indobert-large-p1_preprocessing_without_stopword
Base model
indobenchmark/indobert-large-p1