Adding evaluation results
Browse files- evaluation/ar/acva_5_shot.json +119 -0
- evaluation/ar/ar_ifeval_0_shot.json +142 -0
- evaluation/ar/araMath_5_shot.json +126 -0
- evaluation/ar/araPro_0_shot.json +130 -0
- evaluation/ar/arabicmmlu_0_shot.json +0 -0
- evaluation/ar/etec_0_shot.json +126 -0
- evaluation/ar/exams_ar_5_shot.json +121 -0
- evaluation/ar/gat_0_shot.json +549 -0
- evaluation/ar/moe_ien_mcq_0_shot.json +127 -0
- evaluation/ar/moe_ien_tf_0_shot.json +129 -0
- evaluation/ar/openaimmlu_0_shot.json +0 -0
evaluation/ar/acva_5_shot.json
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"acva": {
|
4 |
+
"alias": "acva",
|
5 |
+
"acc,none": 0.7746268656716417,
|
6 |
+
"acc_stderr,none": 0.004477269169728854,
|
7 |
+
"acc_norm,none": 0.7632606199770379,
|
8 |
+
"acc_norm_stderr,none": 0.004554991129754026
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"acva": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"acva": {
|
16 |
+
"task": "acva",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "FreedomIntelligence/ACVA-Arabic-Cultural-Value-Alignment",
|
21 |
+
"dataset_kwargs": {
|
22 |
+
"trust_remote_code": true
|
23 |
+
},
|
24 |
+
"test_split": "test",
|
25 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _format_subject(subject):\n \n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n \n def _generate_subject(doc):\n subject = _format_subject(doc[\"id\"].split(\"-\")[0])\n\n return subject\n \n def _process_docs(doc):\n keys = [\"\u0635\u062d\",\n \"\u062e\u0637\u0623\"]\n subject = _generate_subject(doc)\n gold = keys.index(doc['answer'])\n out_doc = {\n \"id\": doc[\"id\"],\n \"query\": \"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" + doc[\"question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\",\n \"choices\": keys,\n \"gold\": gold,\n \"subject\": subject,\n }\n \n return out_doc\n\n return dataset.map(_process_docs)\n",
|
26 |
+
"doc_to_text": "query",
|
27 |
+
"doc_to_target": "gold",
|
28 |
+
"doc_to_choice": "choices",
|
29 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d' \u0623\u0648 '\u062e\u0637\u0623' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
30 |
+
"target_delimiter": " ",
|
31 |
+
"fewshot_delimiter": "\n\n",
|
32 |
+
"num_fewshot": 5,
|
33 |
+
"metric_list": [
|
34 |
+
{
|
35 |
+
"metric": "acc",
|
36 |
+
"aggregation": "mean",
|
37 |
+
"higher_is_better": true
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"metric": "acc_norm",
|
41 |
+
"aggregation": "mean",
|
42 |
+
"higher_is_better": true
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"output_type": "multiple_choice",
|
46 |
+
"repeats": 1,
|
47 |
+
"should_decontaminate": false,
|
48 |
+
"metadata": {
|
49 |
+
"version": 0.0
|
50 |
+
}
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"versions": {
|
54 |
+
"acva": 0.0
|
55 |
+
},
|
56 |
+
"n-shot": {
|
57 |
+
"acva": 5
|
58 |
+
},
|
59 |
+
"higher_is_better": {
|
60 |
+
"acva": {
|
61 |
+
"acc": true,
|
62 |
+
"acc_norm": true
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"n-samples": {
|
66 |
+
"acva": {
|
67 |
+
"original": 8710,
|
68 |
+
"effective": 8710
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"config": {
|
72 |
+
"model": "vllm",
|
73 |
+
"model_args": "pretrained=/ALLaM-7B-Instruct,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
74 |
+
"batch_size": 1,
|
75 |
+
"batch_sizes": [],
|
76 |
+
"device": null,
|
77 |
+
"use_cache": null,
|
78 |
+
"limit": null,
|
79 |
+
"bootstrap_iters": 100000,
|
80 |
+
"gen_kwargs": null,
|
81 |
+
"random_seed": 0,
|
82 |
+
"numpy_seed": 1234,
|
83 |
+
"torch_seed": 1234,
|
84 |
+
"fewshot_seed": 1234
|
85 |
+
},
|
86 |
+
"git_hash": "8e1bd48d",
|
87 |
+
"date": 1735662713.7617116,
|
88 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
89 |
+
"transformers_version": "4.47.1",
|
90 |
+
"upper_git_hash": null,
|
91 |
+
"tokenizer_pad_token": [
|
92 |
+
"<unk>",
|
93 |
+
"0"
|
94 |
+
],
|
95 |
+
"tokenizer_eos_token": [
|
96 |
+
"</s>",
|
97 |
+
"2"
|
98 |
+
],
|
99 |
+
"tokenizer_bos_token": [
|
100 |
+
"<s>",
|
101 |
+
"1"
|
102 |
+
],
|
103 |
+
"eot_token_id": 2,
|
104 |
+
"max_length": 4096,
|
105 |
+
"task_hashes": {
|
106 |
+
"acva": "d007c508f0accdd697f549d7cbe7f960f1470c8f86f1a0969355a6ef33108edb"
|
107 |
+
},
|
108 |
+
"model_source": "vllm",
|
109 |
+
"model_name": "/ALLaM-7B-Instruct",
|
110 |
+
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
111 |
+
"system_instruction": null,
|
112 |
+
"system_instruction_sha": null,
|
113 |
+
"fewshot_as_multiturn": false,
|
114 |
+
"chat_template": null,
|
115 |
+
"chat_template_sha": null,
|
116 |
+
"start_time": 3374.021232778,
|
117 |
+
"end_time": 3578.563943596,
|
118 |
+
"total_evaluation_time_seconds": "204.54271081800016"
|
119 |
+
}
|
evaluation/ar/ar_ifeval_0_shot.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"ar_ifeval": {
|
4 |
+
"alias": "ar_ifeval",
|
5 |
+
"prompt_level_strict_acc,none": 0.31343283582089554,
|
6 |
+
"prompt_level_strict_acc_stderr,none": 0.020055655889994813,
|
7 |
+
"inst_level_strict_acc,none": 0.6764505119453925,
|
8 |
+
"inst_level_strict_acc_stderr,none": "N/A",
|
9 |
+
"prompt_level_loose_acc,none": 0.3656716417910448,
|
10 |
+
"prompt_level_loose_acc_stderr,none": 0.020822161638297296,
|
11 |
+
"inst_level_loose_acc,none": 0.7051194539249147,
|
12 |
+
"inst_level_loose_acc_stderr,none": "N/A"
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"group_subtasks": {
|
16 |
+
"ar_ifeval": []
|
17 |
+
},
|
18 |
+
"configs": {
|
19 |
+
"ar_ifeval": {
|
20 |
+
"task": "ar_ifeval",
|
21 |
+
"dataset_path": "lm_eval/tasks/ar_ifeval/ar_ifeval.py",
|
22 |
+
"dataset_name": "ar_ifeval",
|
23 |
+
"dataset_kwargs": {
|
24 |
+
"trust_remote_code": true
|
25 |
+
},
|
26 |
+
"test_split": "test",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": 0,
|
29 |
+
"process_results": "def process_results(doc, results):\n\n response = results[0]\n out_strict = process_sample(doc, response, 'strict')\n out_loose = process_sample(doc, response, 'loose')\n\n\n return {\n \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n }\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "prompt_level_strict_acc",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "inst_level_strict_acc",
|
42 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "prompt_level_loose_acc",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"metric": "inst_level_loose_acc",
|
52 |
+
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
|
53 |
+
"higher_is_better": true
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"output_type": "generate_until",
|
57 |
+
"generation_kwargs": {
|
58 |
+
"until": [],
|
59 |
+
"do_sample": false,
|
60 |
+
"temperature": 0.0,
|
61 |
+
"max_gen_toks": 1280
|
62 |
+
},
|
63 |
+
"repeats": 1,
|
64 |
+
"should_decontaminate": false,
|
65 |
+
"metadata": {
|
66 |
+
"version": 4.0
|
67 |
+
}
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"versions": {
|
71 |
+
"ar_ifeval": 4.0
|
72 |
+
},
|
73 |
+
"n-shot": {
|
74 |
+
"ar_ifeval": 0
|
75 |
+
},
|
76 |
+
"higher_is_better": {
|
77 |
+
"ar_ifeval": {
|
78 |
+
"prompt_level_strict_acc": true,
|
79 |
+
"inst_level_strict_acc": true,
|
80 |
+
"prompt_level_loose_acc": true,
|
81 |
+
"inst_level_loose_acc": true
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"n-samples": {
|
85 |
+
"ar_ifeval": {
|
86 |
+
"original": 536,
|
87 |
+
"effective": 536
|
88 |
+
}
|
89 |
+
},
|
90 |
+
"config": {
|
91 |
+
"model": "hf",
|
92 |
+
"model_args": "pretrained=/ALLaM-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
93 |
+
"model_num_parameters": 7000559616,
|
94 |
+
"model_dtype": "torch.bfloat16",
|
95 |
+
"model_revision": "main",
|
96 |
+
"model_sha": "",
|
97 |
+
"batch_size": 1,
|
98 |
+
"batch_sizes": [],
|
99 |
+
"device": null,
|
100 |
+
"use_cache": null,
|
101 |
+
"limit": null,
|
102 |
+
"bootstrap_iters": 100000,
|
103 |
+
"gen_kwargs": null,
|
104 |
+
"random_seed": 0,
|
105 |
+
"numpy_seed": 1234,
|
106 |
+
"torch_seed": 1234,
|
107 |
+
"fewshot_seed": 1234
|
108 |
+
},
|
109 |
+
"git_hash": "b955b2950",
|
110 |
+
"date": 1739618378.981141,
|
111 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
112 |
+
"transformers_version": "4.48.3",
|
113 |
+
"upper_git_hash": null,
|
114 |
+
"tokenizer_pad_token": [
|
115 |
+
"<unk>",
|
116 |
+
"0"
|
117 |
+
],
|
118 |
+
"tokenizer_eos_token": [
|
119 |
+
"</s>",
|
120 |
+
"2"
|
121 |
+
],
|
122 |
+
"tokenizer_bos_token": [
|
123 |
+
"<s>",
|
124 |
+
"1"
|
125 |
+
],
|
126 |
+
"eot_token_id": 2,
|
127 |
+
"max_length": 4096,
|
128 |
+
"task_hashes": {
|
129 |
+
"ar_ifeval": "d0db7903ef270d7dc54efe4e7713be0de9864fc3a36c901c6e5777a6a5f69aa9"
|
130 |
+
},
|
131 |
+
"model_source": "hf",
|
132 |
+
"model_name": "/ALLaM-7B-Instruct",
|
133 |
+
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
134 |
+
"system_instruction": null,
|
135 |
+
"system_instruction_sha": null,
|
136 |
+
"fewshot_as_multiturn": false,
|
137 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
138 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
139 |
+
"start_time": 1393068.333905473,
|
140 |
+
"end_time": 1397143.169266589,
|
141 |
+
"total_evaluation_time_seconds": "4074.8353611161"
|
142 |
+
}
|
evaluation/ar/araMath_5_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araMath": {
|
4 |
+
"alias": "araMath",
|
5 |
+
"acc,none": 0.6677685950413224,
|
6 |
+
"acc_stderr,none": 0.019165266705090528,
|
7 |
+
"acc_norm,none": 0.6677685950413224,
|
8 |
+
"acc_norm_stderr,none": 0.019165266705090528
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araMath": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araMath": {
|
16 |
+
"task": "araMath",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araMath/araMath.py",
|
21 |
+
"dataset_name": "araMath",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def remove_prefix(choice):\n prefixes = [\"(A)\", \"(B)\", \"(C)\", \"(D)\"]\n for prefix in prefixes:\n if choice.startswith(prefix + \" \"):\n return choice[len(prefix) + 1:] \n return choice \n\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"options\"])]\n )\n\n prompt = f\"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": keys_en.index(doc[\"label\"]),\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "{{choices}}",
|
31 |
+
"description": "\u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u0645\u0646 \u0628\u064a\u0646 'A\u060c B\u060c C\u060c D' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 5,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"araMath": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"araMath": 5
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"araMath": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"araMath": {
|
70 |
+
"original": 605,
|
71 |
+
"effective": 605
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=/ALLaM-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
77 |
+
"model_num_parameters": 7000559616,
|
78 |
+
"model_dtype": "torch.bfloat16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "b955b2950",
|
94 |
+
"date": 1739618269.6292942,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.3",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<unk>",
|
100 |
+
"0"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"</s>",
|
104 |
+
"2"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
"<s>",
|
108 |
+
"1"
|
109 |
+
],
|
110 |
+
"eot_token_id": 2,
|
111 |
+
"max_length": 4096,
|
112 |
+
"task_hashes": {
|
113 |
+
"araMath": "e7f60b63c44ee90c76a61f37207fa1f812622b6662200911fcfd7dabe78ada66"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "/ALLaM-7B-Instruct",
|
117 |
+
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
122 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
123 |
+
"start_time": 1392959.193182268,
|
124 |
+
"end_time": 1393012.133225703,
|
125 |
+
"total_evaluation_time_seconds": "52.940043434966356"
|
126 |
+
}
|
evaluation/ar/araPro_0_shot.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"araPro": {
|
4 |
+
"alias": "araPro",
|
5 |
+
"acc,none": 0.6970605878824235,
|
6 |
+
"acc_stderr,none": 0.006498724870364006,
|
7 |
+
"acc_norm,none": 0.6970605878824235,
|
8 |
+
"acc_norm_stderr,none": 0.006498724870364006
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"araPro": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"araPro": {
|
16 |
+
"task": "araPro",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/araPro/araPro.py",
|
21 |
+
"dataset_name": "araPro",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.replace('.', '') if '.' in choice[:2] else choice\n \n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choice_num = ['choice1', 'choice2', 'choice3', 'choice4']\n choices = \"\".join(\n [f\"{key}. {remove_prefix(doc[choice_num[index]])}\\n\" for index, key in enumerate(keys)]\n )\n\n prompt = f\"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n #keys = [\"1\", \"2\", \"3\", \"4\"]\n keys = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys), \n \"choices\": keys,\n \"gold\": doc[\"answer\"]-1,\n } \n\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "{{choices}}",
|
32 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"fewshot_config": {
|
36 |
+
"sampler": "balanced_cat"
|
37 |
+
},
|
38 |
+
"num_fewshot": 0,
|
39 |
+
"metric_list": [
|
40 |
+
{
|
41 |
+
"metric": "acc",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "acc_norm",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"output_type": "multiple_choice",
|
52 |
+
"repeats": 1,
|
53 |
+
"should_decontaminate": true,
|
54 |
+
"doc_to_decontamination_query": "Question",
|
55 |
+
"metadata": {
|
56 |
+
"version": 2.0
|
57 |
+
}
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"versions": {
|
61 |
+
"araPro": 2.0
|
62 |
+
},
|
63 |
+
"n-shot": {
|
64 |
+
"araPro": 0
|
65 |
+
},
|
66 |
+
"higher_is_better": {
|
67 |
+
"araPro": {
|
68 |
+
"acc": true,
|
69 |
+
"acc_norm": true
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"n-samples": {
|
73 |
+
"araPro": {
|
74 |
+
"original": 5001,
|
75 |
+
"effective": 5001
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"config": {
|
79 |
+
"model": "hf",
|
80 |
+
"model_args": "pretrained=/ALLaM-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
81 |
+
"model_num_parameters": 7000559616,
|
82 |
+
"model_dtype": "torch.bfloat16",
|
83 |
+
"model_revision": "main",
|
84 |
+
"model_sha": "",
|
85 |
+
"batch_size": 1,
|
86 |
+
"batch_sizes": [],
|
87 |
+
"device": null,
|
88 |
+
"use_cache": null,
|
89 |
+
"limit": null,
|
90 |
+
"bootstrap_iters": 100000,
|
91 |
+
"gen_kwargs": null,
|
92 |
+
"random_seed": 0,
|
93 |
+
"numpy_seed": 1234,
|
94 |
+
"torch_seed": 1234,
|
95 |
+
"fewshot_seed": 1234
|
96 |
+
},
|
97 |
+
"git_hash": "b955b2950",
|
98 |
+
"date": 1739617164.0204737,
|
99 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
100 |
+
"transformers_version": "4.48.3",
|
101 |
+
"upper_git_hash": null,
|
102 |
+
"tokenizer_pad_token": [
|
103 |
+
"<unk>",
|
104 |
+
"0"
|
105 |
+
],
|
106 |
+
"tokenizer_eos_token": [
|
107 |
+
"</s>",
|
108 |
+
"2"
|
109 |
+
],
|
110 |
+
"tokenizer_bos_token": [
|
111 |
+
"<s>",
|
112 |
+
"1"
|
113 |
+
],
|
114 |
+
"eot_token_id": 2,
|
115 |
+
"max_length": 4096,
|
116 |
+
"task_hashes": {
|
117 |
+
"araPro": "01340c360a1565c46298c4c24dd3fdfe1ea614c6eef6e4d4f021f1da83da2584"
|
118 |
+
},
|
119 |
+
"model_source": "hf",
|
120 |
+
"model_name": "/ALLaM-7B-Instruct",
|
121 |
+
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
122 |
+
"system_instruction": null,
|
123 |
+
"system_instruction_sha": null,
|
124 |
+
"fewshot_as_multiturn": false,
|
125 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
126 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
127 |
+
"start_time": 1391853.516943726,
|
128 |
+
"end_time": 1392050.054185297,
|
129 |
+
"total_evaluation_time_seconds": "196.5372415711172"
|
130 |
+
}
|
evaluation/ar/arabicmmlu_0_shot.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluation/ar/etec_0_shot.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"etec": {
|
4 |
+
"alias": "etec",
|
5 |
+
"acc,none": 0.6666666666666666,
|
6 |
+
"acc_stderr,none": 0.010854826817097195,
|
7 |
+
"acc_norm,none": 0.6666666666666666,
|
8 |
+
"acc_norm_stderr,none": 0.010854826817097195
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"etec": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"etec": {
|
16 |
+
"task": "etec",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/etec/etec.py",
|
21 |
+
"dataset_name": "etec",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n print(doc[\"label\"])\n keys_ar = [\"\u0623\", \"\u0628\", \"\u062c\", \"\u062f\"]\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": int(doc[\"label\"])-1,\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
28 |
+
"doc_to_text": "query",
|
29 |
+
"doc_to_target": "gold",
|
30 |
+
"doc_to_choice": "choices",
|
31 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d\n ",
|
32 |
+
"target_delimiter": " ",
|
33 |
+
"fewshot_delimiter": "\n\n",
|
34 |
+
"num_fewshot": 0,
|
35 |
+
"metric_list": [
|
36 |
+
{
|
37 |
+
"metric": "acc",
|
38 |
+
"aggregation": "mean",
|
39 |
+
"higher_is_better": true
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"metric": "acc_norm",
|
43 |
+
"aggregation": "mean",
|
44 |
+
"higher_is_better": true
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"output_type": "multiple_choice",
|
48 |
+
"repeats": 1,
|
49 |
+
"should_decontaminate": true,
|
50 |
+
"doc_to_decontamination_query": "query",
|
51 |
+
"metadata": {
|
52 |
+
"version": 0.0
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"versions": {
|
57 |
+
"etec": 0.0
|
58 |
+
},
|
59 |
+
"n-shot": {
|
60 |
+
"etec": 0
|
61 |
+
},
|
62 |
+
"higher_is_better": {
|
63 |
+
"etec": {
|
64 |
+
"acc": true,
|
65 |
+
"acc_norm": true
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"n-samples": {
|
69 |
+
"etec": {
|
70 |
+
"original": 1887,
|
71 |
+
"effective": 1887
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"config": {
|
75 |
+
"model": "hf",
|
76 |
+
"model_args": "pretrained=/ALLaM-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
77 |
+
"model_num_parameters": 7000559616,
|
78 |
+
"model_dtype": "torch.bfloat16",
|
79 |
+
"model_revision": "main",
|
80 |
+
"model_sha": "",
|
81 |
+
"batch_size": 1,
|
82 |
+
"batch_sizes": [],
|
83 |
+
"device": null,
|
84 |
+
"use_cache": null,
|
85 |
+
"limit": null,
|
86 |
+
"bootstrap_iters": 100000,
|
87 |
+
"gen_kwargs": null,
|
88 |
+
"random_seed": 0,
|
89 |
+
"numpy_seed": 1234,
|
90 |
+
"torch_seed": 1234,
|
91 |
+
"fewshot_seed": 1234
|
92 |
+
},
|
93 |
+
"git_hash": "b955b2950",
|
94 |
+
"date": 1739617421.4265695,
|
95 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
96 |
+
"transformers_version": "4.48.3",
|
97 |
+
"upper_git_hash": null,
|
98 |
+
"tokenizer_pad_token": [
|
99 |
+
"<unk>",
|
100 |
+
"0"
|
101 |
+
],
|
102 |
+
"tokenizer_eos_token": [
|
103 |
+
"</s>",
|
104 |
+
"2"
|
105 |
+
],
|
106 |
+
"tokenizer_bos_token": [
|
107 |
+
"<s>",
|
108 |
+
"1"
|
109 |
+
],
|
110 |
+
"eot_token_id": 2,
|
111 |
+
"max_length": 4096,
|
112 |
+
"task_hashes": {
|
113 |
+
"etec": "a0d87bf7eb82815b66ea544cb632aafb803526dee24b399f30fdc751be442b60"
|
114 |
+
},
|
115 |
+
"model_source": "hf",
|
116 |
+
"model_name": "/ALLaM-7B-Instruct",
|
117 |
+
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
118 |
+
"system_instruction": null,
|
119 |
+
"system_instruction_sha": null,
|
120 |
+
"fewshot_as_multiturn": false,
|
121 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
122 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
123 |
+
"start_time": 1392110.980523203,
|
124 |
+
"end_time": 1392198.883363127,
|
125 |
+
"total_evaluation_time_seconds": "87.90283992397599"
|
126 |
+
}
|
evaluation/ar/exams_ar_5_shot.json
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"exams_ar": {
|
4 |
+
"alias": "exams_ar",
|
5 |
+
"acc,none": 0.515828677839851,
|
6 |
+
"acc_stderr,none": 0.021585885942816244,
|
7 |
+
"acc_norm,none": 0.515828677839851,
|
8 |
+
"acc_norm_stderr,none": 0.021585885942816244
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"exams_ar": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"exams_ar": {
|
16 |
+
"task": "exams_ar",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/exams_ar",
|
21 |
+
"dataset_name": "exams_ar",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"test_split": "test",
|
26 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n\n def _process_docs(doc):\n def format_example(doc, keys):\n \"\"\"\n <prompt>\n \u0633\u0624\u0627\u0644:\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n \u0627\u062c\u0627\u0628\u0629:\n \"\"\"\n \n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n def _format_subject(subject):\n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n\n keys = [\"A\", \"B\", \"C\", \"D\"]\n \n subject = doc['id'].split(\"-\")[0]\n description = f\"\ufed2\ufef4\ufee3\ufe8d \ufef2\ufee0\ufef3 \ufe84\ufeb4\ufe8c\ufedf\ufe93 \ufe8d\ufefc\ufea8\ufe98\ufef3\ufe8d\ufead \ufee2\ufee7 \ufee2\ufe98\ufecb\ufea9\ufea9 (\ufee2\ufecb \ufe8d\ufefa\ufe9f\ufe8e\ufe91\ufe8e\ufe97) \ufea1\ufeee\ufedf {_format_subject(subject)} \\n\" #\ufee2\ufee7 \ufed2\ufec0\ufee0\ufedb \ufe8e\ufea8\ufe97\ufead \ufe88\ufe9f\ufe8e\ufe91\ufe93 \ufeed\ufe8e\ufea3\ufea9\ufe93 \ufee2\ufee7 \ufe90\ufef4\ufee7 'A\u060c B\u060c C\u060c D' \ufea9\ufeee\ufee7 \ufeb5\ufeae\ufea3\\n\"\n\n out_doc = {\n \"idx\": doc[\"idx\"],\n \"id\": doc[\"id\"],\n 'dsecription': description,\n \"query\": format_example(doc, keys), # \"Question: \" + doc[\"question\"]['stem'] + \"\\nAnswer:\",\n \"choices\": keys,\n \"gold\": [\"A\", \"B\", \"C\", \"D\"].index(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_docs)\n",
|
27 |
+
"doc_to_text": "query",
|
28 |
+
"doc_to_target": "gold",
|
29 |
+
"doc_to_choice": "choices",
|
30 |
+
"description": "description",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 5,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "acc",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "acc_norm",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "multiple_choice",
|
47 |
+
"repeats": 1,
|
48 |
+
"should_decontaminate": true,
|
49 |
+
"doc_to_decontamination_query": "query",
|
50 |
+
"metadata": {
|
51 |
+
"version": 0.0
|
52 |
+
}
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"versions": {
|
56 |
+
"exams_ar": 0.0
|
57 |
+
},
|
58 |
+
"n-shot": {
|
59 |
+
"exams_ar": 5
|
60 |
+
},
|
61 |
+
"higher_is_better": {
|
62 |
+
"exams_ar": {
|
63 |
+
"acc": true,
|
64 |
+
"acc_norm": true
|
65 |
+
}
|
66 |
+
},
|
67 |
+
"n-samples": {
|
68 |
+
"exams_ar": {
|
69 |
+
"original": 537,
|
70 |
+
"effective": 537
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"config": {
|
74 |
+
"model": "vllm",
|
75 |
+
"model_args": "pretrained=/ALLaM-7B-Instruct,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
76 |
+
"batch_size": 1,
|
77 |
+
"batch_sizes": [],
|
78 |
+
"device": null,
|
79 |
+
"use_cache": null,
|
80 |
+
"limit": null,
|
81 |
+
"bootstrap_iters": 100000,
|
82 |
+
"gen_kwargs": null,
|
83 |
+
"random_seed": 0,
|
84 |
+
"numpy_seed": 1234,
|
85 |
+
"torch_seed": 1234,
|
86 |
+
"fewshot_seed": 1234
|
87 |
+
},
|
88 |
+
"git_hash": "8e1bd48d",
|
89 |
+
"date": 1735662207.0830526,
|
90 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
91 |
+
"transformers_version": "4.47.1",
|
92 |
+
"upper_git_hash": null,
|
93 |
+
"tokenizer_pad_token": [
|
94 |
+
"<unk>",
|
95 |
+
"0"
|
96 |
+
],
|
97 |
+
"tokenizer_eos_token": [
|
98 |
+
"</s>",
|
99 |
+
"2"
|
100 |
+
],
|
101 |
+
"tokenizer_bos_token": [
|
102 |
+
"<s>",
|
103 |
+
"1"
|
104 |
+
],
|
105 |
+
"eot_token_id": 2,
|
106 |
+
"max_length": 4096,
|
107 |
+
"task_hashes": {
|
108 |
+
"exams_ar": "b1561abd56354d570ac16bf64163b0ee8dc6c507234b05f678576b09c26c644a"
|
109 |
+
},
|
110 |
+
"model_source": "vllm",
|
111 |
+
"model_name": "/ALLaM-7B-Instruct",
|
112 |
+
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
113 |
+
"system_instruction": null,
|
114 |
+
"system_instruction_sha": null,
|
115 |
+
"fewshot_as_multiturn": false,
|
116 |
+
"chat_template": null,
|
117 |
+
"chat_template_sha": null,
|
118 |
+
"start_time": 2867.397536365,
|
119 |
+
"end_time": 2948.510496752,
|
120 |
+
"total_evaluation_time_seconds": "81.11296038699993"
|
121 |
+
}
|
evaluation/ar/gat_0_shot.json
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"gat": {
|
4 |
+
"acc,none": 0.4452527279568544,
|
5 |
+
"acc_stderr,none": 0.0038711388833064567,
|
6 |
+
"alias": "gat"
|
7 |
+
},
|
8 |
+
"gat_algebra": {
|
9 |
+
"alias": " - gat_algebra",
|
10 |
+
"acc,none": 0.40667903525046384,
|
11 |
+
"acc_stderr,none": 0.009463939247454995
|
12 |
+
},
|
13 |
+
"gat_analogy": {
|
14 |
+
"alias": " - gat_analogy",
|
15 |
+
"acc,none": 0.35919854280510016,
|
16 |
+
"acc_stderr,none": 0.009158766245747282
|
17 |
+
},
|
18 |
+
"gat_arithmetic": {
|
19 |
+
"alias": " - gat_arithmetic",
|
20 |
+
"acc,none": 0.40154582259845417,
|
21 |
+
"acc_stderr,none": 0.009406284814832203
|
22 |
+
},
|
23 |
+
"gat_association": {
|
24 |
+
"alias": " - gat_association",
|
25 |
+
"acc,none": 0.5464114832535886,
|
26 |
+
"acc_stderr,none": 0.015407801869520031
|
27 |
+
},
|
28 |
+
"gat_comparisons": {
|
29 |
+
"alias": " - gat_comparisons",
|
30 |
+
"acc,none": 0.34508196721311474,
|
31 |
+
"acc_stderr,none": 0.013616100682624904
|
32 |
+
},
|
33 |
+
"gat_completion": {
|
34 |
+
"alias": " - gat_completion",
|
35 |
+
"acc,none": 0.6057851239669422,
|
36 |
+
"acc_stderr,none": 0.014054411207805699
|
37 |
+
},
|
38 |
+
"gat_contextual": {
|
39 |
+
"alias": " - gat_contextual",
|
40 |
+
"acc,none": 0.3941717791411043,
|
41 |
+
"acc_stderr,none": 0.013537713096332765
|
42 |
+
},
|
43 |
+
"gat_geometry": {
|
44 |
+
"alias": " - gat_geometry",
|
45 |
+
"acc,none": 0.473972602739726,
|
46 |
+
"acc_stderr,none": 0.026171590093068537
|
47 |
+
},
|
48 |
+
"gat_reading": {
|
49 |
+
"alias": " - gat_reading",
|
50 |
+
"acc,none": 0.5727788279773157,
|
51 |
+
"acc_stderr,none": 0.009620311542503682
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"groups": {
|
55 |
+
"gat": {
|
56 |
+
"acc,none": 0.4452527279568544,
|
57 |
+
"acc_stderr,none": 0.0038711388833064567,
|
58 |
+
"alias": "gat"
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"group_subtasks": {
|
62 |
+
"gat": [
|
63 |
+
"gat_analogy",
|
64 |
+
"gat_association",
|
65 |
+
"gat_completion",
|
66 |
+
"gat_reading",
|
67 |
+
"gat_algebra",
|
68 |
+
"gat_arithmetic",
|
69 |
+
"gat_comparisons",
|
70 |
+
"gat_contextual",
|
71 |
+
"gat_geometry"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
"configs": {
|
75 |
+
"gat_algebra": {
|
76 |
+
"task": "gat_algebra",
|
77 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
78 |
+
"dataset_name": "algebra",
|
79 |
+
"dataset_kwargs": {
|
80 |
+
"trust_remote_code": true
|
81 |
+
},
|
82 |
+
"test_split": "test",
|
83 |
+
"fewshot_split": "validation",
|
84 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
85 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
86 |
+
"doc_to_target": "{{label}}",
|
87 |
+
"doc_to_choice": [
|
88 |
+
"\u0623",
|
89 |
+
"\u0628",
|
90 |
+
"\u062c",
|
91 |
+
"\u062f"
|
92 |
+
],
|
93 |
+
"description": "",
|
94 |
+
"target_delimiter": " ",
|
95 |
+
"fewshot_delimiter": "\n\n",
|
96 |
+
"num_fewshot": 0,
|
97 |
+
"metric_list": [
|
98 |
+
{
|
99 |
+
"metric": "acc",
|
100 |
+
"aggregation": "mean",
|
101 |
+
"higher_is_better": true
|
102 |
+
}
|
103 |
+
],
|
104 |
+
"output_type": "multiple_choice",
|
105 |
+
"repeats": 1,
|
106 |
+
"should_decontaminate": false,
|
107 |
+
"metadata": {
|
108 |
+
"version": 0.0
|
109 |
+
}
|
110 |
+
},
|
111 |
+
"gat_analogy": {
|
112 |
+
"task": "gat_analogy",
|
113 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
114 |
+
"dataset_name": "analogy",
|
115 |
+
"dataset_kwargs": {
|
116 |
+
"trust_remote_code": true
|
117 |
+
},
|
118 |
+
"test_split": "test",
|
119 |
+
"fewshot_split": "validation",
|
120 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
121 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
122 |
+
"doc_to_target": "{{label}}",
|
123 |
+
"doc_to_choice": [
|
124 |
+
"\u0623",
|
125 |
+
"\u0628",
|
126 |
+
"\u062c",
|
127 |
+
"\u062f"
|
128 |
+
],
|
129 |
+
"description": "",
|
130 |
+
"target_delimiter": " ",
|
131 |
+
"fewshot_delimiter": "\n\n",
|
132 |
+
"num_fewshot": 0,
|
133 |
+
"metric_list": [
|
134 |
+
{
|
135 |
+
"metric": "acc",
|
136 |
+
"aggregation": "mean",
|
137 |
+
"higher_is_better": true
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"output_type": "multiple_choice",
|
141 |
+
"repeats": 1,
|
142 |
+
"should_decontaminate": false,
|
143 |
+
"metadata": {
|
144 |
+
"version": 0.0
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"gat_arithmetic": {
|
148 |
+
"task": "gat_arithmetic",
|
149 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
150 |
+
"dataset_name": "arithmetic",
|
151 |
+
"dataset_kwargs": {
|
152 |
+
"trust_remote_code": true
|
153 |
+
},
|
154 |
+
"test_split": "test",
|
155 |
+
"fewshot_split": "validation",
|
156 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
157 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
158 |
+
"doc_to_target": "{{label}}",
|
159 |
+
"doc_to_choice": [
|
160 |
+
"\u0623",
|
161 |
+
"\u0628",
|
162 |
+
"\u062c",
|
163 |
+
"\u062f"
|
164 |
+
],
|
165 |
+
"description": "",
|
166 |
+
"target_delimiter": " ",
|
167 |
+
"fewshot_delimiter": "\n\n",
|
168 |
+
"num_fewshot": 0,
|
169 |
+
"metric_list": [
|
170 |
+
{
|
171 |
+
"metric": "acc",
|
172 |
+
"aggregation": "mean",
|
173 |
+
"higher_is_better": true
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"output_type": "multiple_choice",
|
177 |
+
"repeats": 1,
|
178 |
+
"should_decontaminate": false,
|
179 |
+
"metadata": {
|
180 |
+
"version": 0.0
|
181 |
+
}
|
182 |
+
},
|
183 |
+
"gat_association": {
|
184 |
+
"task": "gat_association",
|
185 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
186 |
+
"dataset_name": "association",
|
187 |
+
"dataset_kwargs": {
|
188 |
+
"trust_remote_code": true
|
189 |
+
},
|
190 |
+
"test_split": "test",
|
191 |
+
"fewshot_split": "validation",
|
192 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
193 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
194 |
+
"doc_to_target": "{{label}}",
|
195 |
+
"doc_to_choice": [
|
196 |
+
"\u0623",
|
197 |
+
"\u0628",
|
198 |
+
"\u062c",
|
199 |
+
"\u062f"
|
200 |
+
],
|
201 |
+
"description": "",
|
202 |
+
"target_delimiter": " ",
|
203 |
+
"fewshot_delimiter": "\n\n",
|
204 |
+
"num_fewshot": 0,
|
205 |
+
"metric_list": [
|
206 |
+
{
|
207 |
+
"metric": "acc",
|
208 |
+
"aggregation": "mean",
|
209 |
+
"higher_is_better": true
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"output_type": "multiple_choice",
|
213 |
+
"repeats": 1,
|
214 |
+
"should_decontaminate": false,
|
215 |
+
"metadata": {
|
216 |
+
"version": 0.0
|
217 |
+
}
|
218 |
+
},
|
219 |
+
"gat_comparisons": {
|
220 |
+
"task": "gat_comparisons",
|
221 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
222 |
+
"dataset_name": "comparisons",
|
223 |
+
"dataset_kwargs": {
|
224 |
+
"trust_remote_code": true
|
225 |
+
},
|
226 |
+
"test_split": "test",
|
227 |
+
"fewshot_split": "validation",
|
228 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
229 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
230 |
+
"doc_to_target": "{{label}}",
|
231 |
+
"doc_to_choice": [
|
232 |
+
"\u0623",
|
233 |
+
"\u0628",
|
234 |
+
"\u062c",
|
235 |
+
"\u062f"
|
236 |
+
],
|
237 |
+
"description": "",
|
238 |
+
"target_delimiter": " ",
|
239 |
+
"fewshot_delimiter": "\n\n",
|
240 |
+
"num_fewshot": 0,
|
241 |
+
"metric_list": [
|
242 |
+
{
|
243 |
+
"metric": "acc",
|
244 |
+
"aggregation": "mean",
|
245 |
+
"higher_is_better": true
|
246 |
+
}
|
247 |
+
],
|
248 |
+
"output_type": "multiple_choice",
|
249 |
+
"repeats": 1,
|
250 |
+
"should_decontaminate": false,
|
251 |
+
"metadata": {
|
252 |
+
"version": 0.0
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"gat_completion": {
|
256 |
+
"task": "gat_completion",
|
257 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
258 |
+
"dataset_name": "completion",
|
259 |
+
"dataset_kwargs": {
|
260 |
+
"trust_remote_code": true
|
261 |
+
},
|
262 |
+
"test_split": "test",
|
263 |
+
"fewshot_split": "validation",
|
264 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
265 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
266 |
+
"doc_to_target": "{{label}}",
|
267 |
+
"doc_to_choice": [
|
268 |
+
"\u0623",
|
269 |
+
"\u0628",
|
270 |
+
"\u062c",
|
271 |
+
"\u062f"
|
272 |
+
],
|
273 |
+
"description": "",
|
274 |
+
"target_delimiter": " ",
|
275 |
+
"fewshot_delimiter": "\n\n",
|
276 |
+
"num_fewshot": 0,
|
277 |
+
"metric_list": [
|
278 |
+
{
|
279 |
+
"metric": "acc",
|
280 |
+
"aggregation": "mean",
|
281 |
+
"higher_is_better": true
|
282 |
+
}
|
283 |
+
],
|
284 |
+
"output_type": "multiple_choice",
|
285 |
+
"repeats": 1,
|
286 |
+
"should_decontaminate": false,
|
287 |
+
"metadata": {
|
288 |
+
"version": 0.0
|
289 |
+
}
|
290 |
+
},
|
291 |
+
"gat_contextual": {
|
292 |
+
"task": "gat_contextual",
|
293 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
294 |
+
"dataset_name": "contextual",
|
295 |
+
"dataset_kwargs": {
|
296 |
+
"trust_remote_code": true
|
297 |
+
},
|
298 |
+
"test_split": "test",
|
299 |
+
"fewshot_split": "validation",
|
300 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
301 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
302 |
+
"doc_to_target": "{{label}}",
|
303 |
+
"doc_to_choice": [
|
304 |
+
"\u0623",
|
305 |
+
"\u0628",
|
306 |
+
"\u062c",
|
307 |
+
"\u062f"
|
308 |
+
],
|
309 |
+
"description": "\u0627\u0648\u062c\u062f \u0627\u0644\u062e\u0637\u0623 \u0627\u0644\u0633\u064a\u0627\u0642\u064a \u0641\u064a \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0627\u0644\u062a\u0627\u0644\u064a\u0629 \u0645\u0646 \u0628\u064a\u0646 \u0627\u0644\u062e\u064a\u0627\u0631\u0627\u062a:",
|
310 |
+
"target_delimiter": " ",
|
311 |
+
"fewshot_delimiter": "\n\n",
|
312 |
+
"num_fewshot": 0,
|
313 |
+
"metric_list": [
|
314 |
+
{
|
315 |
+
"metric": "acc",
|
316 |
+
"aggregation": "mean",
|
317 |
+
"higher_is_better": true
|
318 |
+
}
|
319 |
+
],
|
320 |
+
"output_type": "multiple_choice",
|
321 |
+
"repeats": 1,
|
322 |
+
"should_decontaminate": false,
|
323 |
+
"metadata": {
|
324 |
+
"version": 0.0
|
325 |
+
}
|
326 |
+
},
|
327 |
+
"gat_geometry": {
|
328 |
+
"task": "gat_geometry",
|
329 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
330 |
+
"dataset_name": "geometry",
|
331 |
+
"dataset_kwargs": {
|
332 |
+
"trust_remote_code": true
|
333 |
+
},
|
334 |
+
"test_split": "test",
|
335 |
+
"fewshot_split": "validation",
|
336 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
337 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
338 |
+
"doc_to_target": "{{label}}",
|
339 |
+
"doc_to_choice": [
|
340 |
+
"\u0623",
|
341 |
+
"\u0628",
|
342 |
+
"\u062c",
|
343 |
+
"\u062f"
|
344 |
+
],
|
345 |
+
"description": "",
|
346 |
+
"target_delimiter": " ",
|
347 |
+
"fewshot_delimiter": "\n\n",
|
348 |
+
"num_fewshot": 0,
|
349 |
+
"metric_list": [
|
350 |
+
{
|
351 |
+
"metric": "acc",
|
352 |
+
"aggregation": "mean",
|
353 |
+
"higher_is_better": true
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"output_type": "multiple_choice",
|
357 |
+
"repeats": 1,
|
358 |
+
"should_decontaminate": false,
|
359 |
+
"metadata": {
|
360 |
+
"version": 0.0
|
361 |
+
}
|
362 |
+
},
|
363 |
+
"gat_reading": {
|
364 |
+
"task": "gat_reading",
|
365 |
+
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
366 |
+
"dataset_name": "reading",
|
367 |
+
"dataset_kwargs": {
|
368 |
+
"trust_remote_code": true
|
369 |
+
},
|
370 |
+
"test_split": "test",
|
371 |
+
"fewshot_split": "validation",
|
372 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
373 |
+
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
374 |
+
"doc_to_target": "{{label}}",
|
375 |
+
"doc_to_choice": [
|
376 |
+
"\u0623",
|
377 |
+
"\u0628",
|
378 |
+
"\u062c",
|
379 |
+
"\u062f"
|
380 |
+
],
|
381 |
+
"description": "",
|
382 |
+
"target_delimiter": " ",
|
383 |
+
"fewshot_delimiter": "\n\n",
|
384 |
+
"num_fewshot": 0,
|
385 |
+
"metric_list": [
|
386 |
+
{
|
387 |
+
"metric": "acc",
|
388 |
+
"aggregation": "mean",
|
389 |
+
"higher_is_better": true
|
390 |
+
}
|
391 |
+
],
|
392 |
+
"output_type": "multiple_choice",
|
393 |
+
"repeats": 1,
|
394 |
+
"should_decontaminate": false,
|
395 |
+
"metadata": {
|
396 |
+
"version": 0.0
|
397 |
+
}
|
398 |
+
}
|
399 |
+
},
|
400 |
+
"versions": {
|
401 |
+
"gat": 0,
|
402 |
+
"gat_algebra": 0.0,
|
403 |
+
"gat_analogy": 0.0,
|
404 |
+
"gat_arithmetic": 0.0,
|
405 |
+
"gat_association": 0.0,
|
406 |
+
"gat_comparisons": 0.0,
|
407 |
+
"gat_completion": 0.0,
|
408 |
+
"gat_contextual": 0.0,
|
409 |
+
"gat_geometry": 0.0,
|
410 |
+
"gat_reading": 0.0
|
411 |
+
},
|
412 |
+
"n-shot": {
|
413 |
+
"gat_algebra": 0,
|
414 |
+
"gat_analogy": 0,
|
415 |
+
"gat_arithmetic": 0,
|
416 |
+
"gat_association": 0,
|
417 |
+
"gat_comparisons": 0,
|
418 |
+
"gat_completion": 0,
|
419 |
+
"gat_contextual": 0,
|
420 |
+
"gat_geometry": 0,
|
421 |
+
"gat_reading": 0
|
422 |
+
},
|
423 |
+
"higher_is_better": {
|
424 |
+
"gat": {
|
425 |
+
"acc": true
|
426 |
+
},
|
427 |
+
"gat_algebra": {
|
428 |
+
"acc": true
|
429 |
+
},
|
430 |
+
"gat_analogy": {
|
431 |
+
"acc": true
|
432 |
+
},
|
433 |
+
"gat_arithmetic": {
|
434 |
+
"acc": true
|
435 |
+
},
|
436 |
+
"gat_association": {
|
437 |
+
"acc": true
|
438 |
+
},
|
439 |
+
"gat_comparisons": {
|
440 |
+
"acc": true
|
441 |
+
},
|
442 |
+
"gat_completion": {
|
443 |
+
"acc": true
|
444 |
+
},
|
445 |
+
"gat_contextual": {
|
446 |
+
"acc": true
|
447 |
+
},
|
448 |
+
"gat_geometry": {
|
449 |
+
"acc": true
|
450 |
+
},
|
451 |
+
"gat_reading": {
|
452 |
+
"acc": true
|
453 |
+
}
|
454 |
+
},
|
455 |
+
"n-samples": {
|
456 |
+
"gat_analogy": {
|
457 |
+
"original": 2745,
|
458 |
+
"effective": 2745
|
459 |
+
},
|
460 |
+
"gat_association": {
|
461 |
+
"original": 1045,
|
462 |
+
"effective": 1045
|
463 |
+
},
|
464 |
+
"gat_completion": {
|
465 |
+
"original": 1210,
|
466 |
+
"effective": 1210
|
467 |
+
},
|
468 |
+
"gat_reading": {
|
469 |
+
"original": 2645,
|
470 |
+
"effective": 2645
|
471 |
+
},
|
472 |
+
"gat_algebra": {
|
473 |
+
"original": 2695,
|
474 |
+
"effective": 2695
|
475 |
+
},
|
476 |
+
"gat_arithmetic": {
|
477 |
+
"original": 2717,
|
478 |
+
"effective": 2717
|
479 |
+
},
|
480 |
+
"gat_comparisons": {
|
481 |
+
"original": 1220,
|
482 |
+
"effective": 1220
|
483 |
+
},
|
484 |
+
"gat_contextual": {
|
485 |
+
"original": 1304,
|
486 |
+
"effective": 1304
|
487 |
+
},
|
488 |
+
"gat_geometry": {
|
489 |
+
"original": 365,
|
490 |
+
"effective": 365
|
491 |
+
}
|
492 |
+
},
|
493 |
+
"config": {
|
494 |
+
"model": "vllm",
|
495 |
+
"model_args": "pretrained=/ALLaM-7B-Instruct,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
496 |
+
"batch_size": 1,
|
497 |
+
"batch_sizes": [],
|
498 |
+
"device": null,
|
499 |
+
"use_cache": null,
|
500 |
+
"limit": null,
|
501 |
+
"bootstrap_iters": 100000,
|
502 |
+
"gen_kwargs": null,
|
503 |
+
"random_seed": 0,
|
504 |
+
"numpy_seed": 1234,
|
505 |
+
"torch_seed": 1234,
|
506 |
+
"fewshot_seed": 1234
|
507 |
+
},
|
508 |
+
"git_hash": "8e1bd48d",
|
509 |
+
"date": 1735664096.2650902,
|
510 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
511 |
+
"transformers_version": "4.47.1",
|
512 |
+
"upper_git_hash": null,
|
513 |
+
"tokenizer_pad_token": [
|
514 |
+
"<unk>",
|
515 |
+
"0"
|
516 |
+
],
|
517 |
+
"tokenizer_eos_token": [
|
518 |
+
"</s>",
|
519 |
+
"2"
|
520 |
+
],
|
521 |
+
"tokenizer_bos_token": [
|
522 |
+
"<s>",
|
523 |
+
"1"
|
524 |
+
],
|
525 |
+
"eot_token_id": 2,
|
526 |
+
"max_length": 4096,
|
527 |
+
"task_hashes": {
|
528 |
+
"gat_analogy": "ede28dec097bfebe8a85a19fa27d001696858276df66254bdb70fc63231f1a83",
|
529 |
+
"gat_association": "5d82550d46c4f3cabf370185a8a23cc2eb5b08f1f0c5e210a8a712562a44bd08",
|
530 |
+
"gat_completion": "fc3c19dd7f1896696fec1bffc21182804c9b2f1fb8d8c882428a6bb4bb61e370",
|
531 |
+
"gat_reading": "93053b187a750d2e87f5488f2d0fda944f3da9195bb04d1c4dee9c4b56fa626a",
|
532 |
+
"gat_algebra": "77832c595eaaf156775c3dbb27da0915ef600ebf46a7113ae32a202b0359e8a6",
|
533 |
+
"gat_arithmetic": "6a498f75f5cc0ffd1b30f7a6293ba80d08f2a8876d5558d8e934bf57355ff0cc",
|
534 |
+
"gat_comparisons": "acb80c0ed8dd07e916a471189aef3a546efc289824b2cc50a32c11dc4c97c9c1",
|
535 |
+
"gat_contextual": "de063ed3b94011d74ee24a6532122c9d344fc15e42800db44f0849995a0bc37a",
|
536 |
+
"gat_geometry": "3e482885559a4404ee9e97556edc6e49959770a499f4ae2c58f18ad85b91a363"
|
537 |
+
},
|
538 |
+
"model_source": "vllm",
|
539 |
+
"model_name": "/ALLaM-7B-Instruct",
|
540 |
+
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
541 |
+
"system_instruction": null,
|
542 |
+
"system_instruction_sha": null,
|
543 |
+
"fewshot_as_multiturn": false,
|
544 |
+
"chat_template": null,
|
545 |
+
"chat_template_sha": null,
|
546 |
+
"start_time": 4756.376698655,
|
547 |
+
"end_time": 5124.76942052,
|
548 |
+
"total_evaluation_time_seconds": "368.39272186499966"
|
549 |
+
}
|
evaluation/ar/moe_ien_mcq_0_shot.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"moe_ien_mcq": {
|
4 |
+
"alias": "moe_ien_mcq",
|
5 |
+
"acc,none": 0.9177177177177177,
|
6 |
+
"acc_stderr,none": 0.002749455634736978,
|
7 |
+
"acc_norm,none": 0.9177177177177177,
|
8 |
+
"acc_norm_stderr,none": 0.002749455634736978
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"moe_ien_mcq": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"moe_ien_mcq": {
|
16 |
+
"task": "moe_ien_mcq",
|
17 |
+
"dataset_path": "lm_eval/tasks/moe_ien_mcq/ien_moe_mcq.py",
|
18 |
+
"dataset_name": "moe_ien_mcq",
|
19 |
+
"dataset_kwargs": {
|
20 |
+
"trust_remote_code": true
|
21 |
+
},
|
22 |
+
"validation_split": "validation",
|
23 |
+
"test_split": "test",
|
24 |
+
"fewshot_split": "validation",
|
25 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.split(\". \", 1)[1] if \". \" in choice else choice\n\n def format_example(doc, keys):\n question = doc[\"Question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"Choices\"])]\n \n )\n prompt = f\"\\n\\n\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys = [\"A\", \"B\", \"C\", \"D\", \"E\", \"F\"][0:len(doc[\"Choices\"])]\n out_doc = {\n \"Query\": format_example(doc, keys), \n \"Choices\": keys,\n \"gold\": int(doc[\"Answer\"])-1, ## \n } \n return out_doc\n \n return dataset.map(_process_docs)\n",
|
26 |
+
"doc_to_text": "Query",
|
27 |
+
"doc_to_target": "gold",
|
28 |
+
"doc_to_choice": "{{Choices}}",
|
29 |
+
"description": "\u0641\u064a\u0645\u0627\u202f\u064a\u0644\u064a\u202f\u0623\u0633\u0626\u0644\u0629\u202f\u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631\u202f\u0645\u0646\u202f\u0645\u062a\u0639\u062f\u062f\u202f(\u0645\u0639\u202f\u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a)\u202f\u0641\u064a\u202f{{Subject}}",
|
30 |
+
"target_delimiter": " ",
|
31 |
+
"fewshot_delimiter": "\n\n",
|
32 |
+
"fewshot_config": {
|
33 |
+
"sampler": "balanced_cat"
|
34 |
+
},
|
35 |
+
"num_fewshot": 0,
|
36 |
+
"metric_list": [
|
37 |
+
{
|
38 |
+
"metric": "acc",
|
39 |
+
"aggregation": "mean",
|
40 |
+
"higher_is_better": true
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"metric": "acc_norm",
|
44 |
+
"aggregation": "mean",
|
45 |
+
"higher_is_better": true
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"output_type": "multiple_choice",
|
49 |
+
"repeats": 1,
|
50 |
+
"should_decontaminate": true,
|
51 |
+
"doc_to_decontamination_query": "Query",
|
52 |
+
"metadata": {
|
53 |
+
"version": 0.0
|
54 |
+
}
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"versions": {
|
58 |
+
"moe_ien_mcq": 0.0
|
59 |
+
},
|
60 |
+
"n-shot": {
|
61 |
+
"moe_ien_mcq": 0
|
62 |
+
},
|
63 |
+
"higher_is_better": {
|
64 |
+
"moe_ien_mcq": {
|
65 |
+
"acc": true,
|
66 |
+
"acc_norm": true
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"n-samples": {
|
70 |
+
"moe_ien_mcq": {
|
71 |
+
"original": 9990,
|
72 |
+
"effective": 9990
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"config": {
|
76 |
+
"model": "hf",
|
77 |
+
"model_args": "pretrained=/ALLaM-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
78 |
+
"model_num_parameters": 7000559616,
|
79 |
+
"model_dtype": "torch.bfloat16",
|
80 |
+
"model_revision": "main",
|
81 |
+
"model_sha": "",
|
82 |
+
"batch_size": 1,
|
83 |
+
"batch_sizes": [],
|
84 |
+
"device": null,
|
85 |
+
"use_cache": null,
|
86 |
+
"limit": null,
|
87 |
+
"bootstrap_iters": 100000,
|
88 |
+
"gen_kwargs": null,
|
89 |
+
"random_seed": 0,
|
90 |
+
"numpy_seed": 1234,
|
91 |
+
"torch_seed": 1234,
|
92 |
+
"fewshot_seed": 1234
|
93 |
+
},
|
94 |
+
"git_hash": "b955b2950",
|
95 |
+
"date": 1739617571.8184838,
|
96 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
97 |
+
"transformers_version": "4.48.3",
|
98 |
+
"upper_git_hash": null,
|
99 |
+
"tokenizer_pad_token": [
|
100 |
+
"<unk>",
|
101 |
+
"0"
|
102 |
+
],
|
103 |
+
"tokenizer_eos_token": [
|
104 |
+
"</s>",
|
105 |
+
"2"
|
106 |
+
],
|
107 |
+
"tokenizer_bos_token": [
|
108 |
+
"<s>",
|
109 |
+
"1"
|
110 |
+
],
|
111 |
+
"eot_token_id": 2,
|
112 |
+
"max_length": 4096,
|
113 |
+
"task_hashes": {
|
114 |
+
"moe_ien_mcq": "504533b140426f12c89d975ef421328fc89d69af8719c420a1bf897ed4724191"
|
115 |
+
},
|
116 |
+
"model_source": "hf",
|
117 |
+
"model_name": "/ALLaM-7B-Instruct",
|
118 |
+
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
119 |
+
"system_instruction": null,
|
120 |
+
"system_instruction_sha": null,
|
121 |
+
"fewshot_as_multiturn": false,
|
122 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
123 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
124 |
+
"start_time": 1392261.292633723,
|
125 |
+
"end_time": 1392626.942167409,
|
126 |
+
"total_evaluation_time_seconds": "365.64953368599527"
|
127 |
+
}
|
evaluation/ar/moe_ien_tf_0_shot.json
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"moe_ien_tf": {
|
4 |
+
"alias": "moe_ien_tf",
|
5 |
+
"acc,none": 0.8294693456980937,
|
6 |
+
"acc_stderr,none": 0.004929073554117403,
|
7 |
+
"acc_norm,none": 0.8294693456980937,
|
8 |
+
"acc_norm_stderr,none": 0.004929073554117403
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"moe_ien_tf": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"moe_ien_tf": {
|
16 |
+
"task": "moe_ien_tf",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "lm_eval/tasks/moe_ien_tf/moe_ien_tf.py",
|
21 |
+
"dataset_name": "moe_ien_tf",
|
22 |
+
"dataset_kwargs": {
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"validation_split": "validation",
|
26 |
+
"test_split": "test",
|
27 |
+
"fewshot_split": "validation",
|
28 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n keys=[\"\u0635\u062d\u064a\u062d\u0629\",\n \"\u062e\u0627\u0637\u0626\u0629\"\n ]\n #keys =[\"\u0635\u0648\u0627\u0628\",\n # \"\u062e\u0637\u0623\"]\n target_key = int(doc[\"Answer\"])-1\n\n out_doc = {\n \"query\": \"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" +doc[\"Question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\", \n \"choices\": keys,\n \"gold\": target_key,\n }\n return out_doc\n return dataset.map(_process_docs)\n",
|
29 |
+
"doc_to_text": "query",
|
30 |
+
"doc_to_target": "gold",
|
31 |
+
"doc_to_choice": "choices",
|
32 |
+
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{Subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d\u064a\u062d\u0629' \u0623\u0648 '\u062e\u0627\u0637\u0626\u0629' \u062f\u0648\u0646 \u0634\u0631\u062d ",
|
33 |
+
"target_delimiter": " ",
|
34 |
+
"fewshot_delimiter": "\n\n",
|
35 |
+
"fewshot_config": {
|
36 |
+
"sampler": "balanced_cat"
|
37 |
+
},
|
38 |
+
"num_fewshot": 0,
|
39 |
+
"metric_list": [
|
40 |
+
{
|
41 |
+
"metric": "acc",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"metric": "acc_norm",
|
47 |
+
"aggregation": "mean",
|
48 |
+
"higher_is_better": true
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"output_type": "multiple_choice",
|
52 |
+
"repeats": 1,
|
53 |
+
"should_decontaminate": false,
|
54 |
+
"metadata": {
|
55 |
+
"version": 2.0
|
56 |
+
}
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"versions": {
|
60 |
+
"moe_ien_tf": 2.0
|
61 |
+
},
|
62 |
+
"n-shot": {
|
63 |
+
"moe_ien_tf": 0
|
64 |
+
},
|
65 |
+
"higher_is_better": {
|
66 |
+
"moe_ien_tf": {
|
67 |
+
"acc": true,
|
68 |
+
"acc_norm": true
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"n-samples": {
|
72 |
+
"moe_ien_tf": {
|
73 |
+
"original": 5823,
|
74 |
+
"effective": 5823
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"config": {
|
78 |
+
"model": "hf",
|
79 |
+
"model_args": "pretrained=/ALLaM-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
|
80 |
+
"model_num_parameters": 7000559616,
|
81 |
+
"model_dtype": "torch.bfloat16",
|
82 |
+
"model_revision": "main",
|
83 |
+
"model_sha": "",
|
84 |
+
"batch_size": 1,
|
85 |
+
"batch_sizes": [],
|
86 |
+
"device": null,
|
87 |
+
"use_cache": null,
|
88 |
+
"limit": null,
|
89 |
+
"bootstrap_iters": 100000,
|
90 |
+
"gen_kwargs": null,
|
91 |
+
"random_seed": 0,
|
92 |
+
"numpy_seed": 1234,
|
93 |
+
"torch_seed": 1234,
|
94 |
+
"fewshot_seed": 1234
|
95 |
+
},
|
96 |
+
"git_hash": "b955b2950",
|
97 |
+
"date": 1739617995.3462336,
|
98 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
99 |
+
"transformers_version": "4.48.3",
|
100 |
+
"upper_git_hash": null,
|
101 |
+
"tokenizer_pad_token": [
|
102 |
+
"<unk>",
|
103 |
+
"0"
|
104 |
+
],
|
105 |
+
"tokenizer_eos_token": [
|
106 |
+
"</s>",
|
107 |
+
"2"
|
108 |
+
],
|
109 |
+
"tokenizer_bos_token": [
|
110 |
+
"<s>",
|
111 |
+
"1"
|
112 |
+
],
|
113 |
+
"eot_token_id": 2,
|
114 |
+
"max_length": 4096,
|
115 |
+
"task_hashes": {
|
116 |
+
"moe_ien_tf": "8701a646f6ea8b9bb96c028f817fbeabfb9031580f5054368b43d14d4a5a1270"
|
117 |
+
},
|
118 |
+
"model_source": "hf",
|
119 |
+
"model_name": "/ALLaM-7B-Instruct",
|
120 |
+
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
121 |
+
"system_instruction": null,
|
122 |
+
"system_instruction_sha": null,
|
123 |
+
"fewshot_as_multiturn": false,
|
124 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
125 |
+
"chat_template_sha": "f1dff938141b507da4a409b6bb3431382088a97a963acd246a41f2f344ae831f",
|
126 |
+
"start_time": 1392684.818305694,
|
127 |
+
"end_time": 1392900.218863064,
|
128 |
+
"total_evaluation_time_seconds": "215.40055736992508"
|
129 |
+
}
|
evaluation/ar/openaimmlu_0_shot.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|