Delete evaluation/ar
Browse files- evaluation/ar/acva_5_shot.json +0 -119
- evaluation/ar/araMath_v2_5_shot.json +0 -123
- evaluation/ar/arabicmmlu_0_shot.json +0 -0
- evaluation/ar/etec_0_shot.json +0 -121
- evaluation/ar/exams_ar_5_shot.json +0 -121
- evaluation/ar/gat_0_shot.json +0 -549
- evaluation/ar/moe_ien_mcq_0_shot.json +0 -118
- evaluation/ar/moe_ien_tf_0_shot.json +0 -119
- evaluation/ar/openaimmlu_0_shot.json +0 -0
- evaluation/ar/sdaia_mcq_0_shot.json +0 -121
evaluation/ar/acva_5_shot.json
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"acva": {
|
4 |
-
"alias": "acva",
|
5 |
-
"acc,none": 0.7746268656716417,
|
6 |
-
"acc_stderr,none": 0.004477269169728854,
|
7 |
-
"acc_norm,none": 0.7632606199770379,
|
8 |
-
"acc_norm_stderr,none": 0.004554991129754026
|
9 |
-
}
|
10 |
-
},
|
11 |
-
"group_subtasks": {
|
12 |
-
"acva": []
|
13 |
-
},
|
14 |
-
"configs": {
|
15 |
-
"acva": {
|
16 |
-
"task": "acva",
|
17 |
-
"tag": [
|
18 |
-
"multiple_choice"
|
19 |
-
],
|
20 |
-
"dataset_path": "FreedomIntelligence/ACVA-Arabic-Cultural-Value-Alignment",
|
21 |
-
"dataset_kwargs": {
|
22 |
-
"trust_remote_code": true
|
23 |
-
},
|
24 |
-
"test_split": "test",
|
25 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _format_subject(subject):\n \n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n \n def _generate_subject(doc):\n subject = _format_subject(doc[\"id\"].split(\"-\")[0])\n\n return subject\n \n def _process_docs(doc):\n keys = [\"\u0635\u062d\",\n \"\u062e\u0637\u0623\"]\n subject = _generate_subject(doc)\n gold = keys.index(doc['answer'])\n out_doc = {\n \"id\": doc[\"id\"],\n \"query\": \"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" + doc[\"question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\",\n \"choices\": keys,\n \"gold\": gold,\n \"subject\": subject,\n }\n \n return out_doc\n\n return dataset.map(_process_docs)\n",
|
26 |
-
"doc_to_text": "query",
|
27 |
-
"doc_to_target": "gold",
|
28 |
-
"doc_to_choice": "choices",
|
29 |
-
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{subject}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d' \u0623\u0648 '\u062e\u0637\u0623' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
30 |
-
"target_delimiter": " ",
|
31 |
-
"fewshot_delimiter": "\n\n",
|
32 |
-
"num_fewshot": 5,
|
33 |
-
"metric_list": [
|
34 |
-
{
|
35 |
-
"metric": "acc",
|
36 |
-
"aggregation": "mean",
|
37 |
-
"higher_is_better": true
|
38 |
-
},
|
39 |
-
{
|
40 |
-
"metric": "acc_norm",
|
41 |
-
"aggregation": "mean",
|
42 |
-
"higher_is_better": true
|
43 |
-
}
|
44 |
-
],
|
45 |
-
"output_type": "multiple_choice",
|
46 |
-
"repeats": 1,
|
47 |
-
"should_decontaminate": false,
|
48 |
-
"metadata": {
|
49 |
-
"version": 0.0
|
50 |
-
}
|
51 |
-
}
|
52 |
-
},
|
53 |
-
"versions": {
|
54 |
-
"acva": 0.0
|
55 |
-
},
|
56 |
-
"n-shot": {
|
57 |
-
"acva": 5
|
58 |
-
},
|
59 |
-
"higher_is_better": {
|
60 |
-
"acva": {
|
61 |
-
"acc": true,
|
62 |
-
"acc_norm": true
|
63 |
-
}
|
64 |
-
},
|
65 |
-
"n-samples": {
|
66 |
-
"acva": {
|
67 |
-
"original": 8710,
|
68 |
-
"effective": 8710
|
69 |
-
}
|
70 |
-
},
|
71 |
-
"config": {
|
72 |
-
"model": "vllm",
|
73 |
-
"model_args": "pretrained=/ALLaM-7B-Instruct,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
74 |
-
"batch_size": 1,
|
75 |
-
"batch_sizes": [],
|
76 |
-
"device": null,
|
77 |
-
"use_cache": null,
|
78 |
-
"limit": null,
|
79 |
-
"bootstrap_iters": 100000,
|
80 |
-
"gen_kwargs": null,
|
81 |
-
"random_seed": 0,
|
82 |
-
"numpy_seed": 1234,
|
83 |
-
"torch_seed": 1234,
|
84 |
-
"fewshot_seed": 1234
|
85 |
-
},
|
86 |
-
"git_hash": "8e1bd48d",
|
87 |
-
"date": 1735662713.7617116,
|
88 |
-
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
89 |
-
"transformers_version": "4.47.1",
|
90 |
-
"upper_git_hash": null,
|
91 |
-
"tokenizer_pad_token": [
|
92 |
-
"<unk>",
|
93 |
-
"0"
|
94 |
-
],
|
95 |
-
"tokenizer_eos_token": [
|
96 |
-
"</s>",
|
97 |
-
"2"
|
98 |
-
],
|
99 |
-
"tokenizer_bos_token": [
|
100 |
-
"<s>",
|
101 |
-
"1"
|
102 |
-
],
|
103 |
-
"eot_token_id": 2,
|
104 |
-
"max_length": 4096,
|
105 |
-
"task_hashes": {
|
106 |
-
"acva": "d007c508f0accdd697f549d7cbe7f960f1470c8f86f1a0969355a6ef33108edb"
|
107 |
-
},
|
108 |
-
"model_source": "vllm",
|
109 |
-
"model_name": "/ALLaM-7B-Instruct",
|
110 |
-
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
111 |
-
"system_instruction": null,
|
112 |
-
"system_instruction_sha": null,
|
113 |
-
"fewshot_as_multiturn": false,
|
114 |
-
"chat_template": null,
|
115 |
-
"chat_template_sha": null,
|
116 |
-
"start_time": 3374.021232778,
|
117 |
-
"end_time": 3578.563943596,
|
118 |
-
"total_evaluation_time_seconds": "204.54271081800016"
|
119 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evaluation/ar/araMath_v2_5_shot.json
DELETED
@@ -1,123 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"araMath_v2": {
|
4 |
-
"alias": "araMath_v2",
|
5 |
-
"acc,none": 0.655,
|
6 |
-
"acc_stderr,none": 0.019423021295885703,
|
7 |
-
"acc_norm,none": 0.655,
|
8 |
-
"acc_norm_stderr,none": 0.019423021295885703
|
9 |
-
}
|
10 |
-
},
|
11 |
-
"group_subtasks": {
|
12 |
-
"araMath_v2": []
|
13 |
-
},
|
14 |
-
"configs": {
|
15 |
-
"araMath_v2": {
|
16 |
-
"task": "araMath_v2",
|
17 |
-
"tag": [
|
18 |
-
"multiple_choice"
|
19 |
-
],
|
20 |
-
"dataset_path": "lm_eval/tasks/araMath_v2",
|
21 |
-
"dataset_name": "araMath_v2",
|
22 |
-
"dataset_kwargs": {
|
23 |
-
"trust_remote_code": true
|
24 |
-
},
|
25 |
-
"test_split": "test",
|
26 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def remove_prefix(choice):\n prefixes = [\"(A)\", \"(B)\", \"(C)\", \"(D)\"]\n for prefix in prefixes:\n if choice.startswith(prefix + \" \"):\n return choice[len(prefix) + 1:] \n return choice \n\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"options\"])]\n )\n\n prompt = f\"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": keys_en.index(doc[\"label\"]),\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
27 |
-
"doc_to_text": "query",
|
28 |
-
"doc_to_target": "gold",
|
29 |
-
"doc_to_choice": "{{choices}}",
|
30 |
-
"description": "\u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u0645\u0646 \u0628\u064a\u0646 'A\u060c B\u060c C\u060c D' \u062f\u0648\u0646 \u0634\u0631\u062d",
|
31 |
-
"target_delimiter": " ",
|
32 |
-
"fewshot_delimiter": "\n\n",
|
33 |
-
"num_fewshot": 5,
|
34 |
-
"metric_list": [
|
35 |
-
{
|
36 |
-
"metric": "acc",
|
37 |
-
"aggregation": "mean",
|
38 |
-
"higher_is_better": true
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"metric": "acc_norm",
|
42 |
-
"aggregation": "mean",
|
43 |
-
"higher_is_better": true
|
44 |
-
}
|
45 |
-
],
|
46 |
-
"output_type": "multiple_choice",
|
47 |
-
"repeats": 1,
|
48 |
-
"should_decontaminate": true,
|
49 |
-
"doc_to_decontamination_query": "query",
|
50 |
-
"metadata": {
|
51 |
-
"version": 0.0
|
52 |
-
}
|
53 |
-
}
|
54 |
-
},
|
55 |
-
"versions": {
|
56 |
-
"araMath_v2": 0.0
|
57 |
-
},
|
58 |
-
"n-shot": {
|
59 |
-
"araMath_v2": 5
|
60 |
-
},
|
61 |
-
"higher_is_better": {
|
62 |
-
"araMath_v2": {
|
63 |
-
"acc": true,
|
64 |
-
"acc_norm": true
|
65 |
-
}
|
66 |
-
},
|
67 |
-
"n-samples": {
|
68 |
-
"araMath_v2": {
|
69 |
-
"original": 600,
|
70 |
-
"effective": 600
|
71 |
-
}
|
72 |
-
},
|
73 |
-
"config": {
|
74 |
-
"model": "hf",
|
75 |
-
"model_args": "parallelize=True,pretrained=/ALLaM-7B-Instruct,trust_remote_code=True",
|
76 |
-
"model_num_parameters": 7000559616,
|
77 |
-
"model_dtype": "torch.bfloat16",
|
78 |
-
"model_revision": "main",
|
79 |
-
"model_sha": "",
|
80 |
-
"batch_size": 1,
|
81 |
-
"batch_sizes": [],
|
82 |
-
"device": null,
|
83 |
-
"use_cache": null,
|
84 |
-
"limit": null,
|
85 |
-
"bootstrap_iters": 100000,
|
86 |
-
"gen_kwargs": null,
|
87 |
-
"random_seed": 0,
|
88 |
-
"numpy_seed": 1234,
|
89 |
-
"torch_seed": 1234,
|
90 |
-
"fewshot_seed": 1234
|
91 |
-
},
|
92 |
-
"git_hash": "5e10e017",
|
93 |
-
"date": 1736774062.2964265,
|
94 |
-
"pretty_env_info": "PyTorch version: 2.1.0a0+29c30b1\nIs debug build: False\nCUDA used to build PyTorch: 12.2\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.86\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.22.2\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.1.0a0+29c30b1\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.16.0a0\n[pip3] triton==2.0.0.dev20221202\n[conda] Could not collect",
|
95 |
-
"transformers_version": "4.38.2",
|
96 |
-
"upper_git_hash": null,
|
97 |
-
"tokenizer_pad_token": [
|
98 |
-
"<unk>",
|
99 |
-
"0"
|
100 |
-
],
|
101 |
-
"tokenizer_eos_token": [
|
102 |
-
"</s>",
|
103 |
-
"2"
|
104 |
-
],
|
105 |
-
"tokenizer_bos_token": [
|
106 |
-
"<s>",
|
107 |
-
"1"
|
108 |
-
],
|
109 |
-
"eot_token_id": 2,
|
110 |
-
"max_length": 4096,
|
111 |
-
"task_hashes": {},
|
112 |
-
"model_source": "hf",
|
113 |
-
"model_name": "/ALLaM-7B-Instruct",
|
114 |
-
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
115 |
-
"system_instruction": null,
|
116 |
-
"system_instruction_sha": null,
|
117 |
-
"fewshot_as_multiturn": false,
|
118 |
-
"chat_template": null,
|
119 |
-
"chat_template_sha": null,
|
120 |
-
"start_time": 72495.638596469,
|
121 |
-
"end_time": 72556.179139124,
|
122 |
-
"total_evaluation_time_seconds": "60.54054265499872"
|
123 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evaluation/ar/arabicmmlu_0_shot.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
evaluation/ar/etec_0_shot.json
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"etec": {
|
4 |
-
"alias": "etec",
|
5 |
-
"acc,none": 0.6680761099365751,
|
6 |
-
"acc_stderr,none": 0.010828952839616325,
|
7 |
-
"acc_norm,none": 0.6680761099365751,
|
8 |
-
"acc_norm_stderr,none": 0.010828952839616325
|
9 |
-
}
|
10 |
-
},
|
11 |
-
"group_subtasks": {
|
12 |
-
"etec": []
|
13 |
-
},
|
14 |
-
"configs": {
|
15 |
-
"etec": {
|
16 |
-
"task": "etec",
|
17 |
-
"tag": [
|
18 |
-
"multiple_choice"
|
19 |
-
],
|
20 |
-
"dataset_path": "lm_eval/tasks/etec",
|
21 |
-
"dataset_name": "etec",
|
22 |
-
"dataset_kwargs": {
|
23 |
-
"trust_remote_code": true
|
24 |
-
},
|
25 |
-
"test_split": "test",
|
26 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices}\\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys_ar = [\"\u0623\", \"\u0628\", \"\u062c\", \"\u062f\"]\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_en,\n \"gold\": keys_ar.index(doc[\"label\"]),\n }\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
27 |
-
"doc_to_text": "query",
|
28 |
-
"doc_to_target": "gold",
|
29 |
-
"doc_to_choice": "choices",
|
30 |
-
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d\n ",
|
31 |
-
"target_delimiter": " ",
|
32 |
-
"fewshot_delimiter": "\n\n",
|
33 |
-
"num_fewshot": 0,
|
34 |
-
"metric_list": [
|
35 |
-
{
|
36 |
-
"metric": "acc",
|
37 |
-
"aggregation": "mean",
|
38 |
-
"higher_is_better": true
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"metric": "acc_norm",
|
42 |
-
"aggregation": "mean",
|
43 |
-
"higher_is_better": true
|
44 |
-
}
|
45 |
-
],
|
46 |
-
"output_type": "multiple_choice",
|
47 |
-
"repeats": 1,
|
48 |
-
"should_decontaminate": true,
|
49 |
-
"doc_to_decontamination_query": "query",
|
50 |
-
"metadata": {
|
51 |
-
"version": 0.0
|
52 |
-
}
|
53 |
-
}
|
54 |
-
},
|
55 |
-
"versions": {
|
56 |
-
"etec": 0.0
|
57 |
-
},
|
58 |
-
"n-shot": {
|
59 |
-
"etec": 0
|
60 |
-
},
|
61 |
-
"higher_is_better": {
|
62 |
-
"etec": {
|
63 |
-
"acc": true,
|
64 |
-
"acc_norm": true
|
65 |
-
}
|
66 |
-
},
|
67 |
-
"n-samples": {
|
68 |
-
"etec": {
|
69 |
-
"original": 1892,
|
70 |
-
"effective": 1892
|
71 |
-
}
|
72 |
-
},
|
73 |
-
"config": {
|
74 |
-
"model": "vllm",
|
75 |
-
"model_args": "pretrained=/ALLaM-7B-Instruct,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
76 |
-
"batch_size": 1,
|
77 |
-
"batch_sizes": [],
|
78 |
-
"device": null,
|
79 |
-
"use_cache": null,
|
80 |
-
"limit": null,
|
81 |
-
"bootstrap_iters": 100000,
|
82 |
-
"gen_kwargs": null,
|
83 |
-
"random_seed": 0,
|
84 |
-
"numpy_seed": 1234,
|
85 |
-
"torch_seed": 1234,
|
86 |
-
"fewshot_seed": 1234
|
87 |
-
},
|
88 |
-
"git_hash": "8e1bd48d",
|
89 |
-
"date": 1735662950.8344455,
|
90 |
-
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
91 |
-
"transformers_version": "4.47.1",
|
92 |
-
"upper_git_hash": null,
|
93 |
-
"tokenizer_pad_token": [
|
94 |
-
"<unk>",
|
95 |
-
"0"
|
96 |
-
],
|
97 |
-
"tokenizer_eos_token": [
|
98 |
-
"</s>",
|
99 |
-
"2"
|
100 |
-
],
|
101 |
-
"tokenizer_bos_token": [
|
102 |
-
"<s>",
|
103 |
-
"1"
|
104 |
-
],
|
105 |
-
"eot_token_id": 2,
|
106 |
-
"max_length": 4096,
|
107 |
-
"task_hashes": {
|
108 |
-
"etec": "8937d87b09ed63604ed9f64a02b8ba75ee9c43b9acebd5dd58a797e187916bbf"
|
109 |
-
},
|
110 |
-
"model_source": "vllm",
|
111 |
-
"model_name": "/ALLaM-7B-Instruct",
|
112 |
-
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
113 |
-
"system_instruction": null,
|
114 |
-
"system_instruction_sha": null,
|
115 |
-
"fewshot_as_multiturn": false,
|
116 |
-
"chat_template": null,
|
117 |
-
"chat_template_sha": null,
|
118 |
-
"start_time": 3611.154007204,
|
119 |
-
"end_time": 3697.095375819,
|
120 |
-
"total_evaluation_time_seconds": "85.94136861499965"
|
121 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evaluation/ar/exams_ar_5_shot.json
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"exams_ar": {
|
4 |
-
"alias": "exams_ar",
|
5 |
-
"acc,none": 0.515828677839851,
|
6 |
-
"acc_stderr,none": 0.021585885942816244,
|
7 |
-
"acc_norm,none": 0.515828677839851,
|
8 |
-
"acc_norm_stderr,none": 0.021585885942816244
|
9 |
-
}
|
10 |
-
},
|
11 |
-
"group_subtasks": {
|
12 |
-
"exams_ar": []
|
13 |
-
},
|
14 |
-
"configs": {
|
15 |
-
"exams_ar": {
|
16 |
-
"task": "exams_ar",
|
17 |
-
"tag": [
|
18 |
-
"multiple_choice"
|
19 |
-
],
|
20 |
-
"dataset_path": "lm_eval/tasks/exams_ar",
|
21 |
-
"dataset_name": "exams_ar",
|
22 |
-
"dataset_kwargs": {
|
23 |
-
"trust_remote_code": true
|
24 |
-
},
|
25 |
-
"test_split": "test",
|
26 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n\n def _process_docs(doc):\n def format_example(doc, keys):\n \"\"\"\n <prompt>\n \u0633\u0624\u0627\u0644:\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n \u0627\u062c\u0627\u0628\u0629:\n \"\"\"\n \n question = doc[\"question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {choice}\\n\" for key, choice in zip(keys, doc[\"choices\"])]\n )\n prompt = f\"\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n def _format_subject(subject):\n arabic_words = subtasks_ar[subtasks.index(subject)]\n return arabic_words\n\n keys = [\"A\", \"B\", \"C\", \"D\"]\n \n subject = doc['id'].split(\"-\")[0]\n description = f\"\ufed2\ufef4\ufee3\ufe8d \ufef2\ufee0\ufef3 \ufe84\ufeb4\ufe8c\ufedf\ufe93 \ufe8d\ufefc\ufea8\ufe98\ufef3\ufe8d\ufead \ufee2\ufee7 \ufee2\ufe98\ufecb\ufea9\ufea9 (\ufee2\ufecb \ufe8d\ufefa\ufe9f\ufe8e\ufe91\ufe8e\ufe97) \ufea1\ufeee\ufedf {_format_subject(subject)} \\n\" #\ufee2\ufee7 \ufed2\ufec0\ufee0\ufedb \ufe8e\ufea8\ufe97\ufead \ufe88\ufe9f\ufe8e\ufe91\ufe93 \ufeed\ufe8e\ufea3\ufea9\ufe93 \ufee2\ufee7 \ufe90\ufef4\ufee7 'A\u060c B\u060c C\u060c D' \ufea9\ufeee\ufee7 \ufeb5\ufeae\ufea3\\n\"\n\n out_doc = {\n \"idx\": doc[\"idx\"],\n \"id\": doc[\"id\"],\n 'dsecription': description,\n \"query\": format_example(doc, keys), # \"Question: \" + doc[\"question\"]['stem'] + \"\\nAnswer:\",\n \"choices\": keys,\n \"gold\": [\"A\", \"B\", \"C\", \"D\"].index(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_docs)\n",
|
27 |
-
"doc_to_text": "query",
|
28 |
-
"doc_to_target": "gold",
|
29 |
-
"doc_to_choice": "choices",
|
30 |
-
"description": "description",
|
31 |
-
"target_delimiter": " ",
|
32 |
-
"fewshot_delimiter": "\n\n",
|
33 |
-
"num_fewshot": 5,
|
34 |
-
"metric_list": [
|
35 |
-
{
|
36 |
-
"metric": "acc",
|
37 |
-
"aggregation": "mean",
|
38 |
-
"higher_is_better": true
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"metric": "acc_norm",
|
42 |
-
"aggregation": "mean",
|
43 |
-
"higher_is_better": true
|
44 |
-
}
|
45 |
-
],
|
46 |
-
"output_type": "multiple_choice",
|
47 |
-
"repeats": 1,
|
48 |
-
"should_decontaminate": true,
|
49 |
-
"doc_to_decontamination_query": "query",
|
50 |
-
"metadata": {
|
51 |
-
"version": 0.0
|
52 |
-
}
|
53 |
-
}
|
54 |
-
},
|
55 |
-
"versions": {
|
56 |
-
"exams_ar": 0.0
|
57 |
-
},
|
58 |
-
"n-shot": {
|
59 |
-
"exams_ar": 5
|
60 |
-
},
|
61 |
-
"higher_is_better": {
|
62 |
-
"exams_ar": {
|
63 |
-
"acc": true,
|
64 |
-
"acc_norm": true
|
65 |
-
}
|
66 |
-
},
|
67 |
-
"n-samples": {
|
68 |
-
"exams_ar": {
|
69 |
-
"original": 537,
|
70 |
-
"effective": 537
|
71 |
-
}
|
72 |
-
},
|
73 |
-
"config": {
|
74 |
-
"model": "vllm",
|
75 |
-
"model_args": "pretrained=/ALLaM-7B-Instruct,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
76 |
-
"batch_size": 1,
|
77 |
-
"batch_sizes": [],
|
78 |
-
"device": null,
|
79 |
-
"use_cache": null,
|
80 |
-
"limit": null,
|
81 |
-
"bootstrap_iters": 100000,
|
82 |
-
"gen_kwargs": null,
|
83 |
-
"random_seed": 0,
|
84 |
-
"numpy_seed": 1234,
|
85 |
-
"torch_seed": 1234,
|
86 |
-
"fewshot_seed": 1234
|
87 |
-
},
|
88 |
-
"git_hash": "8e1bd48d",
|
89 |
-
"date": 1735662207.0830526,
|
90 |
-
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
91 |
-
"transformers_version": "4.47.1",
|
92 |
-
"upper_git_hash": null,
|
93 |
-
"tokenizer_pad_token": [
|
94 |
-
"<unk>",
|
95 |
-
"0"
|
96 |
-
],
|
97 |
-
"tokenizer_eos_token": [
|
98 |
-
"</s>",
|
99 |
-
"2"
|
100 |
-
],
|
101 |
-
"tokenizer_bos_token": [
|
102 |
-
"<s>",
|
103 |
-
"1"
|
104 |
-
],
|
105 |
-
"eot_token_id": 2,
|
106 |
-
"max_length": 4096,
|
107 |
-
"task_hashes": {
|
108 |
-
"exams_ar": "b1561abd56354d570ac16bf64163b0ee8dc6c507234b05f678576b09c26c644a"
|
109 |
-
},
|
110 |
-
"model_source": "vllm",
|
111 |
-
"model_name": "/ALLaM-7B-Instruct",
|
112 |
-
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
113 |
-
"system_instruction": null,
|
114 |
-
"system_instruction_sha": null,
|
115 |
-
"fewshot_as_multiturn": false,
|
116 |
-
"chat_template": null,
|
117 |
-
"chat_template_sha": null,
|
118 |
-
"start_time": 2867.397536365,
|
119 |
-
"end_time": 2948.510496752,
|
120 |
-
"total_evaluation_time_seconds": "81.11296038699993"
|
121 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evaluation/ar/gat_0_shot.json
DELETED
@@ -1,549 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"gat": {
|
4 |
-
"acc,none": 0.4452527279568544,
|
5 |
-
"acc_stderr,none": 0.0038711388833064567,
|
6 |
-
"alias": "gat"
|
7 |
-
},
|
8 |
-
"gat_algebra": {
|
9 |
-
"alias": " - gat_algebra",
|
10 |
-
"acc,none": 0.40667903525046384,
|
11 |
-
"acc_stderr,none": 0.009463939247454995
|
12 |
-
},
|
13 |
-
"gat_analogy": {
|
14 |
-
"alias": " - gat_analogy",
|
15 |
-
"acc,none": 0.35919854280510016,
|
16 |
-
"acc_stderr,none": 0.009158766245747282
|
17 |
-
},
|
18 |
-
"gat_arithmetic": {
|
19 |
-
"alias": " - gat_arithmetic",
|
20 |
-
"acc,none": 0.40154582259845417,
|
21 |
-
"acc_stderr,none": 0.009406284814832203
|
22 |
-
},
|
23 |
-
"gat_association": {
|
24 |
-
"alias": " - gat_association",
|
25 |
-
"acc,none": 0.5464114832535886,
|
26 |
-
"acc_stderr,none": 0.015407801869520031
|
27 |
-
},
|
28 |
-
"gat_comparisons": {
|
29 |
-
"alias": " - gat_comparisons",
|
30 |
-
"acc,none": 0.34508196721311474,
|
31 |
-
"acc_stderr,none": 0.013616100682624904
|
32 |
-
},
|
33 |
-
"gat_completion": {
|
34 |
-
"alias": " - gat_completion",
|
35 |
-
"acc,none": 0.6057851239669422,
|
36 |
-
"acc_stderr,none": 0.014054411207805699
|
37 |
-
},
|
38 |
-
"gat_contextual": {
|
39 |
-
"alias": " - gat_contextual",
|
40 |
-
"acc,none": 0.3941717791411043,
|
41 |
-
"acc_stderr,none": 0.013537713096332765
|
42 |
-
},
|
43 |
-
"gat_geometry": {
|
44 |
-
"alias": " - gat_geometry",
|
45 |
-
"acc,none": 0.473972602739726,
|
46 |
-
"acc_stderr,none": 0.026171590093068537
|
47 |
-
},
|
48 |
-
"gat_reading": {
|
49 |
-
"alias": " - gat_reading",
|
50 |
-
"acc,none": 0.5727788279773157,
|
51 |
-
"acc_stderr,none": 0.009620311542503682
|
52 |
-
}
|
53 |
-
},
|
54 |
-
"groups": {
|
55 |
-
"gat": {
|
56 |
-
"acc,none": 0.4452527279568544,
|
57 |
-
"acc_stderr,none": 0.0038711388833064567,
|
58 |
-
"alias": "gat"
|
59 |
-
}
|
60 |
-
},
|
61 |
-
"group_subtasks": {
|
62 |
-
"gat": [
|
63 |
-
"gat_analogy",
|
64 |
-
"gat_association",
|
65 |
-
"gat_completion",
|
66 |
-
"gat_reading",
|
67 |
-
"gat_algebra",
|
68 |
-
"gat_arithmetic",
|
69 |
-
"gat_comparisons",
|
70 |
-
"gat_contextual",
|
71 |
-
"gat_geometry"
|
72 |
-
]
|
73 |
-
},
|
74 |
-
"configs": {
|
75 |
-
"gat_algebra": {
|
76 |
-
"task": "gat_algebra",
|
77 |
-
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
78 |
-
"dataset_name": "algebra",
|
79 |
-
"dataset_kwargs": {
|
80 |
-
"trust_remote_code": true
|
81 |
-
},
|
82 |
-
"test_split": "test",
|
83 |
-
"fewshot_split": "validation",
|
84 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
85 |
-
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
86 |
-
"doc_to_target": "{{label}}",
|
87 |
-
"doc_to_choice": [
|
88 |
-
"\u0623",
|
89 |
-
"\u0628",
|
90 |
-
"\u062c",
|
91 |
-
"\u062f"
|
92 |
-
],
|
93 |
-
"description": "",
|
94 |
-
"target_delimiter": " ",
|
95 |
-
"fewshot_delimiter": "\n\n",
|
96 |
-
"num_fewshot": 0,
|
97 |
-
"metric_list": [
|
98 |
-
{
|
99 |
-
"metric": "acc",
|
100 |
-
"aggregation": "mean",
|
101 |
-
"higher_is_better": true
|
102 |
-
}
|
103 |
-
],
|
104 |
-
"output_type": "multiple_choice",
|
105 |
-
"repeats": 1,
|
106 |
-
"should_decontaminate": false,
|
107 |
-
"metadata": {
|
108 |
-
"version": 0.0
|
109 |
-
}
|
110 |
-
},
|
111 |
-
"gat_analogy": {
|
112 |
-
"task": "gat_analogy",
|
113 |
-
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
114 |
-
"dataset_name": "analogy",
|
115 |
-
"dataset_kwargs": {
|
116 |
-
"trust_remote_code": true
|
117 |
-
},
|
118 |
-
"test_split": "test",
|
119 |
-
"fewshot_split": "validation",
|
120 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
121 |
-
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
122 |
-
"doc_to_target": "{{label}}",
|
123 |
-
"doc_to_choice": [
|
124 |
-
"\u0623",
|
125 |
-
"\u0628",
|
126 |
-
"\u062c",
|
127 |
-
"\u062f"
|
128 |
-
],
|
129 |
-
"description": "",
|
130 |
-
"target_delimiter": " ",
|
131 |
-
"fewshot_delimiter": "\n\n",
|
132 |
-
"num_fewshot": 0,
|
133 |
-
"metric_list": [
|
134 |
-
{
|
135 |
-
"metric": "acc",
|
136 |
-
"aggregation": "mean",
|
137 |
-
"higher_is_better": true
|
138 |
-
}
|
139 |
-
],
|
140 |
-
"output_type": "multiple_choice",
|
141 |
-
"repeats": 1,
|
142 |
-
"should_decontaminate": false,
|
143 |
-
"metadata": {
|
144 |
-
"version": 0.0
|
145 |
-
}
|
146 |
-
},
|
147 |
-
"gat_arithmetic": {
|
148 |
-
"task": "gat_arithmetic",
|
149 |
-
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
150 |
-
"dataset_name": "arithmetic",
|
151 |
-
"dataset_kwargs": {
|
152 |
-
"trust_remote_code": true
|
153 |
-
},
|
154 |
-
"test_split": "test",
|
155 |
-
"fewshot_split": "validation",
|
156 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
157 |
-
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
158 |
-
"doc_to_target": "{{label}}",
|
159 |
-
"doc_to_choice": [
|
160 |
-
"\u0623",
|
161 |
-
"\u0628",
|
162 |
-
"\u062c",
|
163 |
-
"\u062f"
|
164 |
-
],
|
165 |
-
"description": "",
|
166 |
-
"target_delimiter": " ",
|
167 |
-
"fewshot_delimiter": "\n\n",
|
168 |
-
"num_fewshot": 0,
|
169 |
-
"metric_list": [
|
170 |
-
{
|
171 |
-
"metric": "acc",
|
172 |
-
"aggregation": "mean",
|
173 |
-
"higher_is_better": true
|
174 |
-
}
|
175 |
-
],
|
176 |
-
"output_type": "multiple_choice",
|
177 |
-
"repeats": 1,
|
178 |
-
"should_decontaminate": false,
|
179 |
-
"metadata": {
|
180 |
-
"version": 0.0
|
181 |
-
}
|
182 |
-
},
|
183 |
-
"gat_association": {
|
184 |
-
"task": "gat_association",
|
185 |
-
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
186 |
-
"dataset_name": "association",
|
187 |
-
"dataset_kwargs": {
|
188 |
-
"trust_remote_code": true
|
189 |
-
},
|
190 |
-
"test_split": "test",
|
191 |
-
"fewshot_split": "validation",
|
192 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
193 |
-
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
194 |
-
"doc_to_target": "{{label}}",
|
195 |
-
"doc_to_choice": [
|
196 |
-
"\u0623",
|
197 |
-
"\u0628",
|
198 |
-
"\u062c",
|
199 |
-
"\u062f"
|
200 |
-
],
|
201 |
-
"description": "",
|
202 |
-
"target_delimiter": " ",
|
203 |
-
"fewshot_delimiter": "\n\n",
|
204 |
-
"num_fewshot": 0,
|
205 |
-
"metric_list": [
|
206 |
-
{
|
207 |
-
"metric": "acc",
|
208 |
-
"aggregation": "mean",
|
209 |
-
"higher_is_better": true
|
210 |
-
}
|
211 |
-
],
|
212 |
-
"output_type": "multiple_choice",
|
213 |
-
"repeats": 1,
|
214 |
-
"should_decontaminate": false,
|
215 |
-
"metadata": {
|
216 |
-
"version": 0.0
|
217 |
-
}
|
218 |
-
},
|
219 |
-
"gat_comparisons": {
|
220 |
-
"task": "gat_comparisons",
|
221 |
-
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
222 |
-
"dataset_name": "comparisons",
|
223 |
-
"dataset_kwargs": {
|
224 |
-
"trust_remote_code": true
|
225 |
-
},
|
226 |
-
"test_split": "test",
|
227 |
-
"fewshot_split": "validation",
|
228 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
229 |
-
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
230 |
-
"doc_to_target": "{{label}}",
|
231 |
-
"doc_to_choice": [
|
232 |
-
"\u0623",
|
233 |
-
"\u0628",
|
234 |
-
"\u062c",
|
235 |
-
"\u062f"
|
236 |
-
],
|
237 |
-
"description": "",
|
238 |
-
"target_delimiter": " ",
|
239 |
-
"fewshot_delimiter": "\n\n",
|
240 |
-
"num_fewshot": 0,
|
241 |
-
"metric_list": [
|
242 |
-
{
|
243 |
-
"metric": "acc",
|
244 |
-
"aggregation": "mean",
|
245 |
-
"higher_is_better": true
|
246 |
-
}
|
247 |
-
],
|
248 |
-
"output_type": "multiple_choice",
|
249 |
-
"repeats": 1,
|
250 |
-
"should_decontaminate": false,
|
251 |
-
"metadata": {
|
252 |
-
"version": 0.0
|
253 |
-
}
|
254 |
-
},
|
255 |
-
"gat_completion": {
|
256 |
-
"task": "gat_completion",
|
257 |
-
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
258 |
-
"dataset_name": "completion",
|
259 |
-
"dataset_kwargs": {
|
260 |
-
"trust_remote_code": true
|
261 |
-
},
|
262 |
-
"test_split": "test",
|
263 |
-
"fewshot_split": "validation",
|
264 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
265 |
-
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
266 |
-
"doc_to_target": "{{label}}",
|
267 |
-
"doc_to_choice": [
|
268 |
-
"\u0623",
|
269 |
-
"\u0628",
|
270 |
-
"\u062c",
|
271 |
-
"\u062f"
|
272 |
-
],
|
273 |
-
"description": "",
|
274 |
-
"target_delimiter": " ",
|
275 |
-
"fewshot_delimiter": "\n\n",
|
276 |
-
"num_fewshot": 0,
|
277 |
-
"metric_list": [
|
278 |
-
{
|
279 |
-
"metric": "acc",
|
280 |
-
"aggregation": "mean",
|
281 |
-
"higher_is_better": true
|
282 |
-
}
|
283 |
-
],
|
284 |
-
"output_type": "multiple_choice",
|
285 |
-
"repeats": 1,
|
286 |
-
"should_decontaminate": false,
|
287 |
-
"metadata": {
|
288 |
-
"version": 0.0
|
289 |
-
}
|
290 |
-
},
|
291 |
-
"gat_contextual": {
|
292 |
-
"task": "gat_contextual",
|
293 |
-
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
294 |
-
"dataset_name": "contextual",
|
295 |
-
"dataset_kwargs": {
|
296 |
-
"trust_remote_code": true
|
297 |
-
},
|
298 |
-
"test_split": "test",
|
299 |
-
"fewshot_split": "validation",
|
300 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
301 |
-
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
302 |
-
"doc_to_target": "{{label}}",
|
303 |
-
"doc_to_choice": [
|
304 |
-
"\u0623",
|
305 |
-
"\u0628",
|
306 |
-
"\u062c",
|
307 |
-
"\u062f"
|
308 |
-
],
|
309 |
-
"description": "\u0627\u0648\u062c\u062f \u0627\u0644\u062e\u0637\u0623 \u0627\u0644\u0633\u064a\u0627\u0642\u064a \u0641\u064a \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0627\u0644\u062a\u0627\u0644\u064a\u0629 \u0645\u0646 \u0628\u064a\u0646 \u0627\u0644\u062e\u064a\u0627\u0631\u0627\u062a:",
|
310 |
-
"target_delimiter": " ",
|
311 |
-
"fewshot_delimiter": "\n\n",
|
312 |
-
"num_fewshot": 0,
|
313 |
-
"metric_list": [
|
314 |
-
{
|
315 |
-
"metric": "acc",
|
316 |
-
"aggregation": "mean",
|
317 |
-
"higher_is_better": true
|
318 |
-
}
|
319 |
-
],
|
320 |
-
"output_type": "multiple_choice",
|
321 |
-
"repeats": 1,
|
322 |
-
"should_decontaminate": false,
|
323 |
-
"metadata": {
|
324 |
-
"version": 0.0
|
325 |
-
}
|
326 |
-
},
|
327 |
-
"gat_geometry": {
|
328 |
-
"task": "gat_geometry",
|
329 |
-
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
330 |
-
"dataset_name": "geometry",
|
331 |
-
"dataset_kwargs": {
|
332 |
-
"trust_remote_code": true
|
333 |
-
},
|
334 |
-
"test_split": "test",
|
335 |
-
"fewshot_split": "validation",
|
336 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
337 |
-
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
338 |
-
"doc_to_target": "{{label}}",
|
339 |
-
"doc_to_choice": [
|
340 |
-
"\u0623",
|
341 |
-
"\u0628",
|
342 |
-
"\u062c",
|
343 |
-
"\u062f"
|
344 |
-
],
|
345 |
-
"description": "",
|
346 |
-
"target_delimiter": " ",
|
347 |
-
"fewshot_delimiter": "\n\n",
|
348 |
-
"num_fewshot": 0,
|
349 |
-
"metric_list": [
|
350 |
-
{
|
351 |
-
"metric": "acc",
|
352 |
-
"aggregation": "mean",
|
353 |
-
"higher_is_better": true
|
354 |
-
}
|
355 |
-
],
|
356 |
-
"output_type": "multiple_choice",
|
357 |
-
"repeats": 1,
|
358 |
-
"should_decontaminate": false,
|
359 |
-
"metadata": {
|
360 |
-
"version": 0.0
|
361 |
-
}
|
362 |
-
},
|
363 |
-
"gat_reading": {
|
364 |
-
"task": "gat_reading",
|
365 |
-
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
|
366 |
-
"dataset_name": "reading",
|
367 |
-
"dataset_kwargs": {
|
368 |
-
"trust_remote_code": true
|
369 |
-
},
|
370 |
-
"test_split": "test",
|
371 |
-
"fewshot_split": "validation",
|
372 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
|
373 |
-
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
|
374 |
-
"doc_to_target": "{{label}}",
|
375 |
-
"doc_to_choice": [
|
376 |
-
"\u0623",
|
377 |
-
"\u0628",
|
378 |
-
"\u062c",
|
379 |
-
"\u062f"
|
380 |
-
],
|
381 |
-
"description": "",
|
382 |
-
"target_delimiter": " ",
|
383 |
-
"fewshot_delimiter": "\n\n",
|
384 |
-
"num_fewshot": 0,
|
385 |
-
"metric_list": [
|
386 |
-
{
|
387 |
-
"metric": "acc",
|
388 |
-
"aggregation": "mean",
|
389 |
-
"higher_is_better": true
|
390 |
-
}
|
391 |
-
],
|
392 |
-
"output_type": "multiple_choice",
|
393 |
-
"repeats": 1,
|
394 |
-
"should_decontaminate": false,
|
395 |
-
"metadata": {
|
396 |
-
"version": 0.0
|
397 |
-
}
|
398 |
-
}
|
399 |
-
},
|
400 |
-
"versions": {
|
401 |
-
"gat": 0,
|
402 |
-
"gat_algebra": 0.0,
|
403 |
-
"gat_analogy": 0.0,
|
404 |
-
"gat_arithmetic": 0.0,
|
405 |
-
"gat_association": 0.0,
|
406 |
-
"gat_comparisons": 0.0,
|
407 |
-
"gat_completion": 0.0,
|
408 |
-
"gat_contextual": 0.0,
|
409 |
-
"gat_geometry": 0.0,
|
410 |
-
"gat_reading": 0.0
|
411 |
-
},
|
412 |
-
"n-shot": {
|
413 |
-
"gat_algebra": 0,
|
414 |
-
"gat_analogy": 0,
|
415 |
-
"gat_arithmetic": 0,
|
416 |
-
"gat_association": 0,
|
417 |
-
"gat_comparisons": 0,
|
418 |
-
"gat_completion": 0,
|
419 |
-
"gat_contextual": 0,
|
420 |
-
"gat_geometry": 0,
|
421 |
-
"gat_reading": 0
|
422 |
-
},
|
423 |
-
"higher_is_better": {
|
424 |
-
"gat": {
|
425 |
-
"acc": true
|
426 |
-
},
|
427 |
-
"gat_algebra": {
|
428 |
-
"acc": true
|
429 |
-
},
|
430 |
-
"gat_analogy": {
|
431 |
-
"acc": true
|
432 |
-
},
|
433 |
-
"gat_arithmetic": {
|
434 |
-
"acc": true
|
435 |
-
},
|
436 |
-
"gat_association": {
|
437 |
-
"acc": true
|
438 |
-
},
|
439 |
-
"gat_comparisons": {
|
440 |
-
"acc": true
|
441 |
-
},
|
442 |
-
"gat_completion": {
|
443 |
-
"acc": true
|
444 |
-
},
|
445 |
-
"gat_contextual": {
|
446 |
-
"acc": true
|
447 |
-
},
|
448 |
-
"gat_geometry": {
|
449 |
-
"acc": true
|
450 |
-
},
|
451 |
-
"gat_reading": {
|
452 |
-
"acc": true
|
453 |
-
}
|
454 |
-
},
|
455 |
-
"n-samples": {
|
456 |
-
"gat_analogy": {
|
457 |
-
"original": 2745,
|
458 |
-
"effective": 2745
|
459 |
-
},
|
460 |
-
"gat_association": {
|
461 |
-
"original": 1045,
|
462 |
-
"effective": 1045
|
463 |
-
},
|
464 |
-
"gat_completion": {
|
465 |
-
"original": 1210,
|
466 |
-
"effective": 1210
|
467 |
-
},
|
468 |
-
"gat_reading": {
|
469 |
-
"original": 2645,
|
470 |
-
"effective": 2645
|
471 |
-
},
|
472 |
-
"gat_algebra": {
|
473 |
-
"original": 2695,
|
474 |
-
"effective": 2695
|
475 |
-
},
|
476 |
-
"gat_arithmetic": {
|
477 |
-
"original": 2717,
|
478 |
-
"effective": 2717
|
479 |
-
},
|
480 |
-
"gat_comparisons": {
|
481 |
-
"original": 1220,
|
482 |
-
"effective": 1220
|
483 |
-
},
|
484 |
-
"gat_contextual": {
|
485 |
-
"original": 1304,
|
486 |
-
"effective": 1304
|
487 |
-
},
|
488 |
-
"gat_geometry": {
|
489 |
-
"original": 365,
|
490 |
-
"effective": 365
|
491 |
-
}
|
492 |
-
},
|
493 |
-
"config": {
|
494 |
-
"model": "vllm",
|
495 |
-
"model_args": "pretrained=/ALLaM-7B-Instruct,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
496 |
-
"batch_size": 1,
|
497 |
-
"batch_sizes": [],
|
498 |
-
"device": null,
|
499 |
-
"use_cache": null,
|
500 |
-
"limit": null,
|
501 |
-
"bootstrap_iters": 100000,
|
502 |
-
"gen_kwargs": null,
|
503 |
-
"random_seed": 0,
|
504 |
-
"numpy_seed": 1234,
|
505 |
-
"torch_seed": 1234,
|
506 |
-
"fewshot_seed": 1234
|
507 |
-
},
|
508 |
-
"git_hash": "8e1bd48d",
|
509 |
-
"date": 1735664096.2650902,
|
510 |
-
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
511 |
-
"transformers_version": "4.47.1",
|
512 |
-
"upper_git_hash": null,
|
513 |
-
"tokenizer_pad_token": [
|
514 |
-
"<unk>",
|
515 |
-
"0"
|
516 |
-
],
|
517 |
-
"tokenizer_eos_token": [
|
518 |
-
"</s>",
|
519 |
-
"2"
|
520 |
-
],
|
521 |
-
"tokenizer_bos_token": [
|
522 |
-
"<s>",
|
523 |
-
"1"
|
524 |
-
],
|
525 |
-
"eot_token_id": 2,
|
526 |
-
"max_length": 4096,
|
527 |
-
"task_hashes": {
|
528 |
-
"gat_analogy": "ede28dec097bfebe8a85a19fa27d001696858276df66254bdb70fc63231f1a83",
|
529 |
-
"gat_association": "5d82550d46c4f3cabf370185a8a23cc2eb5b08f1f0c5e210a8a712562a44bd08",
|
530 |
-
"gat_completion": "fc3c19dd7f1896696fec1bffc21182804c9b2f1fb8d8c882428a6bb4bb61e370",
|
531 |
-
"gat_reading": "93053b187a750d2e87f5488f2d0fda944f3da9195bb04d1c4dee9c4b56fa626a",
|
532 |
-
"gat_algebra": "77832c595eaaf156775c3dbb27da0915ef600ebf46a7113ae32a202b0359e8a6",
|
533 |
-
"gat_arithmetic": "6a498f75f5cc0ffd1b30f7a6293ba80d08f2a8876d5558d8e934bf57355ff0cc",
|
534 |
-
"gat_comparisons": "acb80c0ed8dd07e916a471189aef3a546efc289824b2cc50a32c11dc4c97c9c1",
|
535 |
-
"gat_contextual": "de063ed3b94011d74ee24a6532122c9d344fc15e42800db44f0849995a0bc37a",
|
536 |
-
"gat_geometry": "3e482885559a4404ee9e97556edc6e49959770a499f4ae2c58f18ad85b91a363"
|
537 |
-
},
|
538 |
-
"model_source": "vllm",
|
539 |
-
"model_name": "/ALLaM-7B-Instruct",
|
540 |
-
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
541 |
-
"system_instruction": null,
|
542 |
-
"system_instruction_sha": null,
|
543 |
-
"fewshot_as_multiturn": false,
|
544 |
-
"chat_template": null,
|
545 |
-
"chat_template_sha": null,
|
546 |
-
"start_time": 4756.376698655,
|
547 |
-
"end_time": 5124.76942052,
|
548 |
-
"total_evaluation_time_seconds": "368.39272186499966"
|
549 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evaluation/ar/moe_ien_mcq_0_shot.json
DELETED
@@ -1,118 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"moe_ien_mcq": {
|
4 |
-
"alias": "moe_ien_mcq",
|
5 |
-
"acc,none": 0.9154154154154154,
|
6 |
-
"acc_stderr,none": 0.0027841569543517694,
|
7 |
-
"acc_norm,none": 0.9154154154154154,
|
8 |
-
"acc_norm_stderr,none": 0.0027841569543517694
|
9 |
-
}
|
10 |
-
},
|
11 |
-
"group_subtasks": {
|
12 |
-
"moe_ien_mcq": []
|
13 |
-
},
|
14 |
-
"configs": {
|
15 |
-
"moe_ien_mcq": {
|
16 |
-
"task": "moe_ien_mcq",
|
17 |
-
"dataset_path": "lm_eval/tasks/moe_ien_mcq/ien_moe_mcq.py",
|
18 |
-
"dataset_name": "moe_ien_mcq",
|
19 |
-
"dataset_kwargs": {
|
20 |
-
"trust_remote_code": true
|
21 |
-
},
|
22 |
-
"test_split": "test",
|
23 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.split(\". \", 1)[1] if \". \" in choice else choice\n\n def format_example(doc, keys):\n question = doc[\"Question\"].strip()\n \n choices = \"\".join(\n [f\"{key}. {remove_prefix(choice)}\\n\" for key, choice in zip(keys, doc[\"Choices\"])]\n \n )\n prompt = f\"\\n\\n\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n keys = [\"A\", \"B\", \"C\", \"D\", \"E\", \"F\"][0:len(doc[\"Choices\"])]\n out_doc = {\n \"Query\": format_example(doc, keys), \n \"Choices\": keys,\n \"gold\": int(doc[\"Answer\"])-1, ## \n \"Speciality\": doc['Speciality']\n } \n return out_doc\n \n return dataset.map(_process_docs)\n",
|
24 |
-
"doc_to_text": "Query",
|
25 |
-
"doc_to_target": "gold",
|
26 |
-
"doc_to_choice": "{{Choices}}",
|
27 |
-
"description": "\u0641\u064a\u0645\u0627\u202f\u064a\u0644\u064a\u202f\u0623\u0633\u0626\u0644\u0629\u202f\u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631\u202f\u0645\u0646\u202f\u0645\u062a\u0639\u062f\u062f\u202f(\u0645\u0639\u202f\u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a)\u202f\u0641\u064a\u202f{{Speciality}}",
|
28 |
-
"target_delimiter": " ",
|
29 |
-
"fewshot_delimiter": "\n\n",
|
30 |
-
"num_fewshot": 0,
|
31 |
-
"metric_list": [
|
32 |
-
{
|
33 |
-
"metric": "acc",
|
34 |
-
"aggregation": "mean",
|
35 |
-
"higher_is_better": true
|
36 |
-
},
|
37 |
-
{
|
38 |
-
"metric": "acc_norm",
|
39 |
-
"aggregation": "mean",
|
40 |
-
"higher_is_better": true
|
41 |
-
}
|
42 |
-
],
|
43 |
-
"output_type": "multiple_choice",
|
44 |
-
"repeats": 1,
|
45 |
-
"should_decontaminate": true,
|
46 |
-
"doc_to_decontamination_query": "Query",
|
47 |
-
"metadata": {
|
48 |
-
"version": 0.0
|
49 |
-
}
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"versions": {
|
53 |
-
"moe_ien_mcq": 0.0
|
54 |
-
},
|
55 |
-
"n-shot": {
|
56 |
-
"moe_ien_mcq": 0
|
57 |
-
},
|
58 |
-
"higher_is_better": {
|
59 |
-
"moe_ien_mcq": {
|
60 |
-
"acc": true,
|
61 |
-
"acc_norm": true
|
62 |
-
}
|
63 |
-
},
|
64 |
-
"n-samples": {
|
65 |
-
"moe_ien_mcq": {
|
66 |
-
"original": 9990,
|
67 |
-
"effective": 9990
|
68 |
-
}
|
69 |
-
},
|
70 |
-
"config": {
|
71 |
-
"model": "vllm",
|
72 |
-
"model_args": "pretrained=/ALLaM-7B-Instruct,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
73 |
-
"batch_size": 1,
|
74 |
-
"batch_sizes": [],
|
75 |
-
"device": null,
|
76 |
-
"use_cache": null,
|
77 |
-
"limit": null,
|
78 |
-
"bootstrap_iters": 100000,
|
79 |
-
"gen_kwargs": null,
|
80 |
-
"random_seed": 0,
|
81 |
-
"numpy_seed": 1234,
|
82 |
-
"torch_seed": 1234,
|
83 |
-
"fewshot_seed": 1234
|
84 |
-
},
|
85 |
-
"git_hash": "8e1bd48d",
|
86 |
-
"date": 1735663068.5370116,
|
87 |
-
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
88 |
-
"transformers_version": "4.47.1",
|
89 |
-
"upper_git_hash": null,
|
90 |
-
"tokenizer_pad_token": [
|
91 |
-
"<unk>",
|
92 |
-
"0"
|
93 |
-
],
|
94 |
-
"tokenizer_eos_token": [
|
95 |
-
"</s>",
|
96 |
-
"2"
|
97 |
-
],
|
98 |
-
"tokenizer_bos_token": [
|
99 |
-
"<s>",
|
100 |
-
"1"
|
101 |
-
],
|
102 |
-
"eot_token_id": 2,
|
103 |
-
"max_length": 4096,
|
104 |
-
"task_hashes": {
|
105 |
-
"moe_ien_mcq": "554899322e5b78369683b10024d90dc868f768d310530589a6167541e8f9d594"
|
106 |
-
},
|
107 |
-
"model_source": "vllm",
|
108 |
-
"model_name": "/ALLaM-7B-Instruct",
|
109 |
-
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
110 |
-
"system_instruction": null,
|
111 |
-
"system_instruction_sha": null,
|
112 |
-
"fewshot_as_multiturn": false,
|
113 |
-
"chat_template": null,
|
114 |
-
"chat_template_sha": null,
|
115 |
-
"start_time": 3728.910211786,
|
116 |
-
"end_time": 3947.718352837,
|
117 |
-
"total_evaluation_time_seconds": "218.8081410509999"
|
118 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evaluation/ar/moe_ien_tf_0_shot.json
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"moe_ien_tf": {
|
4 |
-
"alias": "moe_ien_tf",
|
5 |
-
"acc,none": 0.8557082967729356,
|
6 |
-
"acc_stderr,none": 0.0034697209254064324,
|
7 |
-
"acc_norm,none": 0.8557082967729356,
|
8 |
-
"acc_norm_stderr,none": 0.0034697209254064324
|
9 |
-
}
|
10 |
-
},
|
11 |
-
"group_subtasks": {
|
12 |
-
"moe_ien_tf": []
|
13 |
-
},
|
14 |
-
"configs": {
|
15 |
-
"moe_ien_tf": {
|
16 |
-
"task": "moe_ien_tf",
|
17 |
-
"tag": [
|
18 |
-
"multiple_choice"
|
19 |
-
],
|
20 |
-
"dataset_path": "lm_eval/tasks/moe_ien_tf",
|
21 |
-
"dataset_kwargs": {
|
22 |
-
"trust_remote_code": true
|
23 |
-
},
|
24 |
-
"test_split": "test",
|
25 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n keys=[\"\u0635\u062d\u064a\u062d\u0629\",\n \"\u062e\u0627\u0637\u0626\u0629\"\n ]\n #keys =[\"\u0635\u0648\u0627\u0628\",\n # \"\u062e\u0637\u0623\"]\n target_key = int(doc[\"Answer\"])-1\n\n out_doc = {\n \"query\": \"\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644:\" +doc[\"Question\"]+\"\\n\u0625\u062c\u0627\u0628\u0629:'\", \n \"choices\": keys,\n \"gold\": target_key,\n }\n return out_doc\n return dataset.map(_process_docs)\n",
|
26 |
-
"doc_to_text": "query",
|
27 |
-
"doc_to_target": "gold",
|
28 |
-
"doc_to_choice": "choices",
|
29 |
-
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0639\u0628\u0627\u0631\u0627\u062a \u0625\u0645\u0627 \u0635\u062d\u064a\u062d\u0629 \u0623\u0648 \u062e\u0627\u0637\u0626\u0629 \u062d\u0648\u0644 {{Speciality}}\n \u0627\u0644\u0631\u062c\u0627\u0621 \u062a\u0635\u0646\u064a\u0641 \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0625\u0644\u0649 '\u0635\u062d\u064a\u062d\u0629' \u0623\u0648 '\u062e\u0627\u0637\u0626\u0629' \u062f\u0648\u0646 \u0634\u0631\u062d ",
|
30 |
-
"target_delimiter": " ",
|
31 |
-
"fewshot_delimiter": "\n\n",
|
32 |
-
"num_fewshot": 0,
|
33 |
-
"metric_list": [
|
34 |
-
{
|
35 |
-
"metric": "acc",
|
36 |
-
"aggregation": "mean",
|
37 |
-
"higher_is_better": true
|
38 |
-
},
|
39 |
-
{
|
40 |
-
"metric": "acc_norm",
|
41 |
-
"aggregation": "mean",
|
42 |
-
"higher_is_better": true
|
43 |
-
}
|
44 |
-
],
|
45 |
-
"output_type": "multiple_choice",
|
46 |
-
"repeats": 1,
|
47 |
-
"should_decontaminate": false,
|
48 |
-
"metadata": {
|
49 |
-
"version": 0.0
|
50 |
-
}
|
51 |
-
}
|
52 |
-
},
|
53 |
-
"versions": {
|
54 |
-
"moe_ien_tf": 0.0
|
55 |
-
},
|
56 |
-
"n-shot": {
|
57 |
-
"moe_ien_tf": 0
|
58 |
-
},
|
59 |
-
"higher_is_better": {
|
60 |
-
"moe_ien_tf": {
|
61 |
-
"acc": true,
|
62 |
-
"acc_norm": true
|
63 |
-
}
|
64 |
-
},
|
65 |
-
"n-samples": {
|
66 |
-
"moe_ien_tf": {
|
67 |
-
"original": 10257,
|
68 |
-
"effective": 10257
|
69 |
-
}
|
70 |
-
},
|
71 |
-
"config": {
|
72 |
-
"model": "vllm",
|
73 |
-
"model_args": "pretrained=/ALLaM-7B-Instruct,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
74 |
-
"batch_size": 1,
|
75 |
-
"batch_sizes": [],
|
76 |
-
"device": null,
|
77 |
-
"use_cache": null,
|
78 |
-
"limit": null,
|
79 |
-
"bootstrap_iters": 100000,
|
80 |
-
"gen_kwargs": null,
|
81 |
-
"random_seed": 0,
|
82 |
-
"numpy_seed": 1234,
|
83 |
-
"torch_seed": 1234,
|
84 |
-
"fewshot_seed": 1234
|
85 |
-
},
|
86 |
-
"git_hash": "8e1bd48d",
|
87 |
-
"date": 1735663321.6141305,
|
88 |
-
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
89 |
-
"transformers_version": "4.47.1",
|
90 |
-
"upper_git_hash": null,
|
91 |
-
"tokenizer_pad_token": [
|
92 |
-
"<unk>",
|
93 |
-
"0"
|
94 |
-
],
|
95 |
-
"tokenizer_eos_token": [
|
96 |
-
"</s>",
|
97 |
-
"2"
|
98 |
-
],
|
99 |
-
"tokenizer_bos_token": [
|
100 |
-
"<s>",
|
101 |
-
"1"
|
102 |
-
],
|
103 |
-
"eot_token_id": 2,
|
104 |
-
"max_length": 4096,
|
105 |
-
"task_hashes": {
|
106 |
-
"moe_ien_tf": "bf29d6fb290755a9dc7c5aaf1263e4cd1e9d82a62085aa6279661d8b84fd5ab6"
|
107 |
-
},
|
108 |
-
"model_source": "vllm",
|
109 |
-
"model_name": "/ALLaM-7B-Instruct",
|
110 |
-
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
111 |
-
"system_instruction": null,
|
112 |
-
"system_instruction_sha": null,
|
113 |
-
"fewshot_as_multiturn": false,
|
114 |
-
"chat_template": null,
|
115 |
-
"chat_template_sha": null,
|
116 |
-
"start_time": 3981.83990155,
|
117 |
-
"end_time": 4097.740745391,
|
118 |
-
"total_evaluation_time_seconds": "115.9008438410001"
|
119 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evaluation/ar/openaimmlu_0_shot.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
evaluation/ar/sdaia_mcq_0_shot.json
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"results": {
|
3 |
-
"sdaia_mcq": {
|
4 |
-
"alias": "sdaia_mcq",
|
5 |
-
"acc,none": 0.739021329987453,
|
6 |
-
"acc_stderr,none": 0.011003303841318535,
|
7 |
-
"acc_norm,none": 0.739021329987453,
|
8 |
-
"acc_norm_stderr,none": 0.011003303841318535
|
9 |
-
}
|
10 |
-
},
|
11 |
-
"group_subtasks": {
|
12 |
-
"sdaia_mcq": []
|
13 |
-
},
|
14 |
-
"configs": {
|
15 |
-
"sdaia_mcq": {
|
16 |
-
"task": "sdaia_mcq",
|
17 |
-
"tag": [
|
18 |
-
"multiple_choice"
|
19 |
-
],
|
20 |
-
"dataset_path": "lm_eval/tasks/sdaia_mcq/sdaia_mcq.py",
|
21 |
-
"dataset_name": "sdaia_mcq",
|
22 |
-
"dataset_kwargs": {
|
23 |
-
"trust_remote_code": true
|
24 |
-
},
|
25 |
-
"test_split": "test",
|
26 |
-
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc): \n def remove_prefix(choice):\n return choice.replace('.', '') if '.' in choice[:2] else choice\n \n def format_example(doc, keys):\n question = doc[\"question\"].strip()\n \n choice_num = ['choice1', 'choice2', 'choice3', 'choice4']\n choices = \"\".join(\n [f\"{key}. {remove_prefix(doc[choice_num[index]])}\\n\" for index, key in enumerate(keys)]\n )\n\n prompt = f\"\\n\\n\\n\u0627\u0644\u0633\u0624\u0627\u0644: {question}\\n{choices} \\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:\"\n return prompt\n\n #keys = [\"1\", \"2\", \"3\", \"4\"]\n keys = [\"A\", \"B\", \"C\", \"D\"]\n out_doc = {\n \"query\": format_example(doc, keys), \n \"choices\": keys,\n \"gold\": doc[\"answer\"]-1,\n } \n\n return out_doc\n \n return dataset.map(_process_docs)\n",
|
27 |
-
"doc_to_text": "query",
|
28 |
-
"doc_to_target": "gold",
|
29 |
-
"doc_to_choice": "{{choices}}",
|
30 |
-
"description": "\u0641\u064a\u0645\u0627 \u064a\u0644\u064a \u0623\u0633\u0626\u0644\u0629 \u0627\u0644\u0627\u062e\u062a\u064a\u0627\u0631 \u0645\u0646 \u0645\u062a\u0639\u062f\u062f (\u0645\u0639 \u0627\u0644\u0625\u062c\u0627\u0628\u0627\u062a) \u0645\u0646 \u0641\u0636\u0644\u0643 \u0627\u062e\u062a\u0631 \u0625\u062c\u0627\u0628\u0629 \u0648\u0627\u062d\u062f\u0629 \u062f\u0648\u0646 \u0634\u0631\u062d",
|
31 |
-
"target_delimiter": " ",
|
32 |
-
"fewshot_delimiter": "\n\n",
|
33 |
-
"num_fewshot": 0,
|
34 |
-
"metric_list": [
|
35 |
-
{
|
36 |
-
"metric": "acc",
|
37 |
-
"aggregation": "mean",
|
38 |
-
"higher_is_better": true
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"metric": "acc_norm",
|
42 |
-
"aggregation": "mean",
|
43 |
-
"higher_is_better": true
|
44 |
-
}
|
45 |
-
],
|
46 |
-
"output_type": "multiple_choice",
|
47 |
-
"repeats": 1,
|
48 |
-
"should_decontaminate": true,
|
49 |
-
"doc_to_decontamination_query": "Question",
|
50 |
-
"metadata": {
|
51 |
-
"version": 0.0
|
52 |
-
}
|
53 |
-
}
|
54 |
-
},
|
55 |
-
"versions": {
|
56 |
-
"sdaia_mcq": 0.0
|
57 |
-
},
|
58 |
-
"n-shot": {
|
59 |
-
"sdaia_mcq": 0
|
60 |
-
},
|
61 |
-
"higher_is_better": {
|
62 |
-
"sdaia_mcq": {
|
63 |
-
"acc": true,
|
64 |
-
"acc_norm": true
|
65 |
-
}
|
66 |
-
},
|
67 |
-
"n-samples": {
|
68 |
-
"sdaia_mcq": {
|
69 |
-
"original": 1594,
|
70 |
-
"effective": 1594
|
71 |
-
}
|
72 |
-
},
|
73 |
-
"config": {
|
74 |
-
"model": "vllm",
|
75 |
-
"model_args": "pretrained=/ALLaM-7B-Instruct,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.8",
|
76 |
-
"batch_size": 1,
|
77 |
-
"batch_sizes": [],
|
78 |
-
"device": null,
|
79 |
-
"use_cache": null,
|
80 |
-
"limit": null,
|
81 |
-
"bootstrap_iters": 100000,
|
82 |
-
"gen_kwargs": null,
|
83 |
-
"random_seed": 0,
|
84 |
-
"numpy_seed": 1234,
|
85 |
-
"torch_seed": 1234,
|
86 |
-
"fewshot_seed": 1234
|
87 |
-
},
|
88 |
-
"git_hash": "8e1bd48d",
|
89 |
-
"date": 1735663470.0459642,
|
90 |
-
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
91 |
-
"transformers_version": "4.47.1",
|
92 |
-
"upper_git_hash": null,
|
93 |
-
"tokenizer_pad_token": [
|
94 |
-
"<unk>",
|
95 |
-
"0"
|
96 |
-
],
|
97 |
-
"tokenizer_eos_token": [
|
98 |
-
"</s>",
|
99 |
-
"2"
|
100 |
-
],
|
101 |
-
"tokenizer_bos_token": [
|
102 |
-
"<s>",
|
103 |
-
"1"
|
104 |
-
],
|
105 |
-
"eot_token_id": 2,
|
106 |
-
"max_length": 4096,
|
107 |
-
"task_hashes": {
|
108 |
-
"sdaia_mcq": "c69b252ba97d5f402c302aadb4d06d0293774e38250e701b1d0c7984fa47dd24"
|
109 |
-
},
|
110 |
-
"model_source": "vllm",
|
111 |
-
"model_name": "/ALLaM-7B-Instruct",
|
112 |
-
"model_name_sanitized": "/ALLaM-7B-Instruct",
|
113 |
-
"system_instruction": null,
|
114 |
-
"system_instruction_sha": null,
|
115 |
-
"fewshot_as_multiturn": false,
|
116 |
-
"chat_template": null,
|
117 |
-
"chat_template_sha": null,
|
118 |
-
"start_time": 4130.43217211,
|
119 |
-
"end_time": 4204.747507708,
|
120 |
-
"total_evaluation_time_seconds": "74.31533559800027"
|
121 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|