Delete pretrained
Browse files- pretrained/nomic-ai/nomic-embed-text-v1/.gitattributes +0 -35
- pretrained/nomic-ai/nomic-embed-text-v1/1_Pooling/config.json +0 -9
- pretrained/nomic-ai/nomic-embed-text-v1/README.md +0 -2736
- pretrained/nomic-ai/nomic-embed-text-v1/config.json +0 -56
- pretrained/nomic-ai/nomic-embed-text-v1/config_sentence_transformers.json +0 -7
- pretrained/nomic-ai/nomic-embed-text-v1/configuration_hf_nomic_bert.py +0 -53
- pretrained/nomic-ai/nomic-embed-text-v1/model.safetensors +0 -3
- pretrained/nomic-ai/nomic-embed-text-v1/modeling_hf_nomic_bert.py +0 -1238
- pretrained/nomic-ai/nomic-embed-text-v1/modules.json +0 -20
- pretrained/nomic-ai/nomic-embed-text-v1/onnx/model.onnx +0 -3
- pretrained/nomic-ai/nomic-embed-text-v1/onnx/model_quantized.onnx +0 -3
- pretrained/nomic-ai/nomic-embed-text-v1/pytorch_model.bin +0 -3
- pretrained/nomic-ai/nomic-embed-text-v1/sentence_bert_config.json +0 -4
- pretrained/nomic-ai/nomic-embed-text-v1/special_tokens_map.json +0 -7
- pretrained/nomic-ai/nomic-embed-text-v1/tokenizer.json +0 -0
- pretrained/nomic-ai/nomic-embed-text-v1/tokenizer_config.json +0 -55
- pretrained/nomic-ai/nomic-embed-text-v1/vocab.txt +0 -0
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/.gitattributes +0 -35
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/README.md +0 -181
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/config.json +0 -28
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/generation_config.json +0 -8
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model-00001-of-00005.safetensors +0 -3
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model-00002-of-00005.safetensors +0 -3
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model-00003-of-00005.safetensors +0 -3
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model-00004-of-00005.safetensors +0 -3
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model-00005-of-00005.safetensors +0 -3
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model.safetensors.index.json +0 -442
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/solar_logo.png +0 -0
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/tokenizer.json +0 -0
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/tokenizer.model +0 -3
- pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/tokenizer_config.json +0 -43
pretrained/nomic-ai/nomic-embed-text-v1/.gitattributes
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/1_Pooling/config.json
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"word_embedding_dimension": 768,
|
3 |
-
"pooling_mode_cls_token": false,
|
4 |
-
"pooling_mode_mean_tokens": true,
|
5 |
-
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
-
"pooling_mode_weightedmean_tokens": false,
|
8 |
-
"pooling_mode_lasttoken": false
|
9 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/README.md
DELETED
@@ -1,2736 +0,0 @@
|
|
1 |
-
---
|
2 |
-
library_name: sentence-transformers
|
3 |
-
pipeline_tag: sentence-similarity
|
4 |
-
tags:
|
5 |
-
- feature-extraction
|
6 |
-
- sentence-similarity
|
7 |
-
- mteb
|
8 |
-
- transformers
|
9 |
-
- transformers.js
|
10 |
-
model-index:
|
11 |
-
- name: epoch_0_model
|
12 |
-
results:
|
13 |
-
- task:
|
14 |
-
type: Classification
|
15 |
-
dataset:
|
16 |
-
type: mteb/amazon_counterfactual
|
17 |
-
name: MTEB AmazonCounterfactualClassification (en)
|
18 |
-
config: en
|
19 |
-
split: test
|
20 |
-
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
21 |
-
metrics:
|
22 |
-
- type: accuracy
|
23 |
-
value: 76.8507462686567
|
24 |
-
- type: ap
|
25 |
-
value: 40.592189159090495
|
26 |
-
- type: f1
|
27 |
-
value: 71.01634655512476
|
28 |
-
- task:
|
29 |
-
type: Classification
|
30 |
-
dataset:
|
31 |
-
type: mteb/amazon_polarity
|
32 |
-
name: MTEB AmazonPolarityClassification
|
33 |
-
config: default
|
34 |
-
split: test
|
35 |
-
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
36 |
-
metrics:
|
37 |
-
- type: accuracy
|
38 |
-
value: 91.51892500000001
|
39 |
-
- type: ap
|
40 |
-
value: 88.50346762975335
|
41 |
-
- type: f1
|
42 |
-
value: 91.50342077459624
|
43 |
-
- task:
|
44 |
-
type: Classification
|
45 |
-
dataset:
|
46 |
-
type: mteb/amazon_reviews_multi
|
47 |
-
name: MTEB AmazonReviewsClassification (en)
|
48 |
-
config: en
|
49 |
-
split: test
|
50 |
-
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
51 |
-
metrics:
|
52 |
-
- type: accuracy
|
53 |
-
value: 47.364
|
54 |
-
- type: f1
|
55 |
-
value: 46.72708080922794
|
56 |
-
- task:
|
57 |
-
type: Retrieval
|
58 |
-
dataset:
|
59 |
-
type: arguana
|
60 |
-
name: MTEB ArguAna
|
61 |
-
config: default
|
62 |
-
split: test
|
63 |
-
revision: None
|
64 |
-
metrics:
|
65 |
-
- type: map_at_1
|
66 |
-
value: 25.178
|
67 |
-
- type: map_at_10
|
68 |
-
value: 40.244
|
69 |
-
- type: map_at_100
|
70 |
-
value: 41.321999999999996
|
71 |
-
- type: map_at_1000
|
72 |
-
value: 41.331
|
73 |
-
- type: map_at_3
|
74 |
-
value: 35.016999999999996
|
75 |
-
- type: map_at_5
|
76 |
-
value: 37.99
|
77 |
-
- type: mrr_at_1
|
78 |
-
value: 25.605
|
79 |
-
- type: mrr_at_10
|
80 |
-
value: 40.422000000000004
|
81 |
-
- type: mrr_at_100
|
82 |
-
value: 41.507
|
83 |
-
- type: mrr_at_1000
|
84 |
-
value: 41.516
|
85 |
-
- type: mrr_at_3
|
86 |
-
value: 35.23
|
87 |
-
- type: mrr_at_5
|
88 |
-
value: 38.15
|
89 |
-
- type: ndcg_at_1
|
90 |
-
value: 25.178
|
91 |
-
- type: ndcg_at_10
|
92 |
-
value: 49.258
|
93 |
-
- type: ndcg_at_100
|
94 |
-
value: 53.776
|
95 |
-
- type: ndcg_at_1000
|
96 |
-
value: 53.995000000000005
|
97 |
-
- type: ndcg_at_3
|
98 |
-
value: 38.429
|
99 |
-
- type: ndcg_at_5
|
100 |
-
value: 43.803
|
101 |
-
- type: precision_at_1
|
102 |
-
value: 25.178
|
103 |
-
- type: precision_at_10
|
104 |
-
value: 7.831
|
105 |
-
- type: precision_at_100
|
106 |
-
value: 0.979
|
107 |
-
- type: precision_at_1000
|
108 |
-
value: 0.1
|
109 |
-
- type: precision_at_3
|
110 |
-
value: 16.121
|
111 |
-
- type: precision_at_5
|
112 |
-
value: 12.29
|
113 |
-
- type: recall_at_1
|
114 |
-
value: 25.178
|
115 |
-
- type: recall_at_10
|
116 |
-
value: 78.307
|
117 |
-
- type: recall_at_100
|
118 |
-
value: 97.866
|
119 |
-
- type: recall_at_1000
|
120 |
-
value: 99.57300000000001
|
121 |
-
- type: recall_at_3
|
122 |
-
value: 48.364000000000004
|
123 |
-
- type: recall_at_5
|
124 |
-
value: 61.451
|
125 |
-
- task:
|
126 |
-
type: Clustering
|
127 |
-
dataset:
|
128 |
-
type: mteb/arxiv-clustering-p2p
|
129 |
-
name: MTEB ArxivClusteringP2P
|
130 |
-
config: default
|
131 |
-
split: test
|
132 |
-
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
133 |
-
metrics:
|
134 |
-
- type: v_measure
|
135 |
-
value: 45.93034494751465
|
136 |
-
- task:
|
137 |
-
type: Clustering
|
138 |
-
dataset:
|
139 |
-
type: mteb/arxiv-clustering-s2s
|
140 |
-
name: MTEB ArxivClusteringS2S
|
141 |
-
config: default
|
142 |
-
split: test
|
143 |
-
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
144 |
-
metrics:
|
145 |
-
- type: v_measure
|
146 |
-
value: 36.64579480054327
|
147 |
-
- task:
|
148 |
-
type: Reranking
|
149 |
-
dataset:
|
150 |
-
type: mteb/askubuntudupquestions-reranking
|
151 |
-
name: MTEB AskUbuntuDupQuestions
|
152 |
-
config: default
|
153 |
-
split: test
|
154 |
-
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
155 |
-
metrics:
|
156 |
-
- type: map
|
157 |
-
value: 60.601310529222054
|
158 |
-
- type: mrr
|
159 |
-
value: 75.04484896451656
|
160 |
-
- task:
|
161 |
-
type: STS
|
162 |
-
dataset:
|
163 |
-
type: mteb/biosses-sts
|
164 |
-
name: MTEB BIOSSES
|
165 |
-
config: default
|
166 |
-
split: test
|
167 |
-
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
168 |
-
metrics:
|
169 |
-
- type: cos_sim_pearson
|
170 |
-
value: 88.57797718095814
|
171 |
-
- type: cos_sim_spearman
|
172 |
-
value: 86.47064499110101
|
173 |
-
- type: euclidean_pearson
|
174 |
-
value: 87.4559602783142
|
175 |
-
- type: euclidean_spearman
|
176 |
-
value: 86.47064499110101
|
177 |
-
- type: manhattan_pearson
|
178 |
-
value: 87.7232764230245
|
179 |
-
- type: manhattan_spearman
|
180 |
-
value: 86.91222131777742
|
181 |
-
- task:
|
182 |
-
type: Classification
|
183 |
-
dataset:
|
184 |
-
type: mteb/banking77
|
185 |
-
name: MTEB Banking77Classification
|
186 |
-
config: default
|
187 |
-
split: test
|
188 |
-
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
189 |
-
metrics:
|
190 |
-
- type: accuracy
|
191 |
-
value: 84.5422077922078
|
192 |
-
- type: f1
|
193 |
-
value: 84.47657456950589
|
194 |
-
- task:
|
195 |
-
type: Clustering
|
196 |
-
dataset:
|
197 |
-
type: mteb/biorxiv-clustering-p2p
|
198 |
-
name: MTEB BiorxivClusteringP2P
|
199 |
-
config: default
|
200 |
-
split: test
|
201 |
-
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
202 |
-
metrics:
|
203 |
-
- type: v_measure
|
204 |
-
value: 38.48953561974464
|
205 |
-
- task:
|
206 |
-
type: Clustering
|
207 |
-
dataset:
|
208 |
-
type: mteb/biorxiv-clustering-s2s
|
209 |
-
name: MTEB BiorxivClusteringS2S
|
210 |
-
config: default
|
211 |
-
split: test
|
212 |
-
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
213 |
-
metrics:
|
214 |
-
- type: v_measure
|
215 |
-
value: 32.75995857510105
|
216 |
-
- task:
|
217 |
-
type: Retrieval
|
218 |
-
dataset:
|
219 |
-
type: BeIR/cqadupstack
|
220 |
-
name: MTEB CQADupstackAndroidRetrieval
|
221 |
-
config: default
|
222 |
-
split: test
|
223 |
-
revision: None
|
224 |
-
metrics:
|
225 |
-
- type: map_at_1
|
226 |
-
value: 30.008000000000003
|
227 |
-
- type: map_at_10
|
228 |
-
value: 39.51
|
229 |
-
- type: map_at_100
|
230 |
-
value: 40.841
|
231 |
-
- type: map_at_1000
|
232 |
-
value: 40.973
|
233 |
-
- type: map_at_3
|
234 |
-
value: 36.248999999999995
|
235 |
-
- type: map_at_5
|
236 |
-
value: 38.096999999999994
|
237 |
-
- type: mrr_at_1
|
238 |
-
value: 36.481
|
239 |
-
- type: mrr_at_10
|
240 |
-
value: 44.818000000000005
|
241 |
-
- type: mrr_at_100
|
242 |
-
value: 45.64
|
243 |
-
- type: mrr_at_1000
|
244 |
-
value: 45.687
|
245 |
-
- type: mrr_at_3
|
246 |
-
value: 42.036
|
247 |
-
- type: mrr_at_5
|
248 |
-
value: 43.782
|
249 |
-
- type: ndcg_at_1
|
250 |
-
value: 36.481
|
251 |
-
- type: ndcg_at_10
|
252 |
-
value: 45.152
|
253 |
-
- type: ndcg_at_100
|
254 |
-
value: 50.449
|
255 |
-
- type: ndcg_at_1000
|
256 |
-
value: 52.76499999999999
|
257 |
-
- type: ndcg_at_3
|
258 |
-
value: 40.161
|
259 |
-
- type: ndcg_at_5
|
260 |
-
value: 42.577999999999996
|
261 |
-
- type: precision_at_1
|
262 |
-
value: 36.481
|
263 |
-
- type: precision_at_10
|
264 |
-
value: 8.369
|
265 |
-
- type: precision_at_100
|
266 |
-
value: 1.373
|
267 |
-
- type: precision_at_1000
|
268 |
-
value: 0.186
|
269 |
-
- type: precision_at_3
|
270 |
-
value: 18.693
|
271 |
-
- type: precision_at_5
|
272 |
-
value: 13.533999999999999
|
273 |
-
- type: recall_at_1
|
274 |
-
value: 30.008000000000003
|
275 |
-
- type: recall_at_10
|
276 |
-
value: 56.108999999999995
|
277 |
-
- type: recall_at_100
|
278 |
-
value: 78.55499999999999
|
279 |
-
- type: recall_at_1000
|
280 |
-
value: 93.659
|
281 |
-
- type: recall_at_3
|
282 |
-
value: 41.754999999999995
|
283 |
-
- type: recall_at_5
|
284 |
-
value: 48.296
|
285 |
-
- task:
|
286 |
-
type: Retrieval
|
287 |
-
dataset:
|
288 |
-
type: BeIR/cqadupstack
|
289 |
-
name: MTEB CQADupstackEnglishRetrieval
|
290 |
-
config: default
|
291 |
-
split: test
|
292 |
-
revision: None
|
293 |
-
metrics:
|
294 |
-
- type: map_at_1
|
295 |
-
value: 30.262
|
296 |
-
- type: map_at_10
|
297 |
-
value: 40.139
|
298 |
-
- type: map_at_100
|
299 |
-
value: 41.394
|
300 |
-
- type: map_at_1000
|
301 |
-
value: 41.526
|
302 |
-
- type: map_at_3
|
303 |
-
value: 37.155
|
304 |
-
- type: map_at_5
|
305 |
-
value: 38.785
|
306 |
-
- type: mrr_at_1
|
307 |
-
value: 38.153
|
308 |
-
- type: mrr_at_10
|
309 |
-
value: 46.369
|
310 |
-
- type: mrr_at_100
|
311 |
-
value: 47.072
|
312 |
-
- type: mrr_at_1000
|
313 |
-
value: 47.111999999999995
|
314 |
-
- type: mrr_at_3
|
315 |
-
value: 44.268
|
316 |
-
- type: mrr_at_5
|
317 |
-
value: 45.389
|
318 |
-
- type: ndcg_at_1
|
319 |
-
value: 38.153
|
320 |
-
- type: ndcg_at_10
|
321 |
-
value: 45.925
|
322 |
-
- type: ndcg_at_100
|
323 |
-
value: 50.394000000000005
|
324 |
-
- type: ndcg_at_1000
|
325 |
-
value: 52.37500000000001
|
326 |
-
- type: ndcg_at_3
|
327 |
-
value: 41.754000000000005
|
328 |
-
- type: ndcg_at_5
|
329 |
-
value: 43.574
|
330 |
-
- type: precision_at_1
|
331 |
-
value: 38.153
|
332 |
-
- type: precision_at_10
|
333 |
-
value: 8.796
|
334 |
-
- type: precision_at_100
|
335 |
-
value: 1.432
|
336 |
-
- type: precision_at_1000
|
337 |
-
value: 0.189
|
338 |
-
- type: precision_at_3
|
339 |
-
value: 20.318
|
340 |
-
- type: precision_at_5
|
341 |
-
value: 14.395
|
342 |
-
- type: recall_at_1
|
343 |
-
value: 30.262
|
344 |
-
- type: recall_at_10
|
345 |
-
value: 55.72200000000001
|
346 |
-
- type: recall_at_100
|
347 |
-
value: 74.97500000000001
|
348 |
-
- type: recall_at_1000
|
349 |
-
value: 87.342
|
350 |
-
- type: recall_at_3
|
351 |
-
value: 43.129
|
352 |
-
- type: recall_at_5
|
353 |
-
value: 48.336
|
354 |
-
- task:
|
355 |
-
type: Retrieval
|
356 |
-
dataset:
|
357 |
-
type: BeIR/cqadupstack
|
358 |
-
name: MTEB CQADupstackGamingRetrieval
|
359 |
-
config: default
|
360 |
-
split: test
|
361 |
-
revision: None
|
362 |
-
metrics:
|
363 |
-
- type: map_at_1
|
364 |
-
value: 39.951
|
365 |
-
- type: map_at_10
|
366 |
-
value: 51.248000000000005
|
367 |
-
- type: map_at_100
|
368 |
-
value: 52.188
|
369 |
-
- type: map_at_1000
|
370 |
-
value: 52.247
|
371 |
-
- type: map_at_3
|
372 |
-
value: 48.211
|
373 |
-
- type: map_at_5
|
374 |
-
value: 49.797000000000004
|
375 |
-
- type: mrr_at_1
|
376 |
-
value: 45.329
|
377 |
-
- type: mrr_at_10
|
378 |
-
value: 54.749
|
379 |
-
- type: mrr_at_100
|
380 |
-
value: 55.367999999999995
|
381 |
-
- type: mrr_at_1000
|
382 |
-
value: 55.400000000000006
|
383 |
-
- type: mrr_at_3
|
384 |
-
value: 52.382
|
385 |
-
- type: mrr_at_5
|
386 |
-
value: 53.649
|
387 |
-
- type: ndcg_at_1
|
388 |
-
value: 45.329
|
389 |
-
- type: ndcg_at_10
|
390 |
-
value: 56.847
|
391 |
-
- type: ndcg_at_100
|
392 |
-
value: 60.738
|
393 |
-
- type: ndcg_at_1000
|
394 |
-
value: 61.976
|
395 |
-
- type: ndcg_at_3
|
396 |
-
value: 51.59
|
397 |
-
- type: ndcg_at_5
|
398 |
-
value: 53.915
|
399 |
-
- type: precision_at_1
|
400 |
-
value: 45.329
|
401 |
-
- type: precision_at_10
|
402 |
-
value: 8.959
|
403 |
-
- type: precision_at_100
|
404 |
-
value: 1.187
|
405 |
-
- type: precision_at_1000
|
406 |
-
value: 0.134
|
407 |
-
- type: precision_at_3
|
408 |
-
value: 22.612
|
409 |
-
- type: precision_at_5
|
410 |
-
value: 15.273
|
411 |
-
- type: recall_at_1
|
412 |
-
value: 39.951
|
413 |
-
- type: recall_at_10
|
414 |
-
value: 70.053
|
415 |
-
- type: recall_at_100
|
416 |
-
value: 86.996
|
417 |
-
- type: recall_at_1000
|
418 |
-
value: 95.707
|
419 |
-
- type: recall_at_3
|
420 |
-
value: 56.032000000000004
|
421 |
-
- type: recall_at_5
|
422 |
-
value: 61.629999999999995
|
423 |
-
- task:
|
424 |
-
type: Retrieval
|
425 |
-
dataset:
|
426 |
-
type: BeIR/cqadupstack
|
427 |
-
name: MTEB CQADupstackGisRetrieval
|
428 |
-
config: default
|
429 |
-
split: test
|
430 |
-
revision: None
|
431 |
-
metrics:
|
432 |
-
- type: map_at_1
|
433 |
-
value: 25.566
|
434 |
-
- type: map_at_10
|
435 |
-
value: 33.207
|
436 |
-
- type: map_at_100
|
437 |
-
value: 34.166000000000004
|
438 |
-
- type: map_at_1000
|
439 |
-
value: 34.245
|
440 |
-
- type: map_at_3
|
441 |
-
value: 30.94
|
442 |
-
- type: map_at_5
|
443 |
-
value: 32.01
|
444 |
-
- type: mrr_at_1
|
445 |
-
value: 27.345000000000002
|
446 |
-
- type: mrr_at_10
|
447 |
-
value: 35.193000000000005
|
448 |
-
- type: mrr_at_100
|
449 |
-
value: 35.965
|
450 |
-
- type: mrr_at_1000
|
451 |
-
value: 36.028999999999996
|
452 |
-
- type: mrr_at_3
|
453 |
-
value: 32.806000000000004
|
454 |
-
- type: mrr_at_5
|
455 |
-
value: 34.021
|
456 |
-
- type: ndcg_at_1
|
457 |
-
value: 27.345000000000002
|
458 |
-
- type: ndcg_at_10
|
459 |
-
value: 37.891999999999996
|
460 |
-
- type: ndcg_at_100
|
461 |
-
value: 42.664
|
462 |
-
- type: ndcg_at_1000
|
463 |
-
value: 44.757000000000005
|
464 |
-
- type: ndcg_at_3
|
465 |
-
value: 33.123000000000005
|
466 |
-
- type: ndcg_at_5
|
467 |
-
value: 35.035
|
468 |
-
- type: precision_at_1
|
469 |
-
value: 27.345000000000002
|
470 |
-
- type: precision_at_10
|
471 |
-
value: 5.763
|
472 |
-
- type: precision_at_100
|
473 |
-
value: 0.859
|
474 |
-
- type: precision_at_1000
|
475 |
-
value: 0.108
|
476 |
-
- type: precision_at_3
|
477 |
-
value: 13.71
|
478 |
-
- type: precision_at_5
|
479 |
-
value: 9.401
|
480 |
-
- type: recall_at_1
|
481 |
-
value: 25.566
|
482 |
-
- type: recall_at_10
|
483 |
-
value: 50.563
|
484 |
-
- type: recall_at_100
|
485 |
-
value: 72.86399999999999
|
486 |
-
- type: recall_at_1000
|
487 |
-
value: 88.68599999999999
|
488 |
-
- type: recall_at_3
|
489 |
-
value: 37.43
|
490 |
-
- type: recall_at_5
|
491 |
-
value: 41.894999999999996
|
492 |
-
- task:
|
493 |
-
type: Retrieval
|
494 |
-
dataset:
|
495 |
-
type: BeIR/cqadupstack
|
496 |
-
name: MTEB CQADupstackMathematicaRetrieval
|
497 |
-
config: default
|
498 |
-
split: test
|
499 |
-
revision: None
|
500 |
-
metrics:
|
501 |
-
- type: map_at_1
|
502 |
-
value: 16.663
|
503 |
-
- type: map_at_10
|
504 |
-
value: 23.552
|
505 |
-
- type: map_at_100
|
506 |
-
value: 24.538
|
507 |
-
- type: map_at_1000
|
508 |
-
value: 24.661
|
509 |
-
- type: map_at_3
|
510 |
-
value: 21.085
|
511 |
-
- type: map_at_5
|
512 |
-
value: 22.391
|
513 |
-
- type: mrr_at_1
|
514 |
-
value: 20.025000000000002
|
515 |
-
- type: mrr_at_10
|
516 |
-
value: 27.643
|
517 |
-
- type: mrr_at_100
|
518 |
-
value: 28.499999999999996
|
519 |
-
- type: mrr_at_1000
|
520 |
-
value: 28.582
|
521 |
-
- type: mrr_at_3
|
522 |
-
value: 25.083
|
523 |
-
- type: mrr_at_5
|
524 |
-
value: 26.544
|
525 |
-
- type: ndcg_at_1
|
526 |
-
value: 20.025000000000002
|
527 |
-
- type: ndcg_at_10
|
528 |
-
value: 28.272000000000002
|
529 |
-
- type: ndcg_at_100
|
530 |
-
value: 33.353
|
531 |
-
- type: ndcg_at_1000
|
532 |
-
value: 36.454
|
533 |
-
- type: ndcg_at_3
|
534 |
-
value: 23.579
|
535 |
-
- type: ndcg_at_5
|
536 |
-
value: 25.685000000000002
|
537 |
-
- type: precision_at_1
|
538 |
-
value: 20.025000000000002
|
539 |
-
- type: precision_at_10
|
540 |
-
value: 5.187
|
541 |
-
- type: precision_at_100
|
542 |
-
value: 0.897
|
543 |
-
- type: precision_at_1000
|
544 |
-
value: 0.13
|
545 |
-
- type: precision_at_3
|
546 |
-
value: 10.987
|
547 |
-
- type: precision_at_5
|
548 |
-
value: 8.06
|
549 |
-
- type: recall_at_1
|
550 |
-
value: 16.663
|
551 |
-
- type: recall_at_10
|
552 |
-
value: 38.808
|
553 |
-
- type: recall_at_100
|
554 |
-
value: 61.305
|
555 |
-
- type: recall_at_1000
|
556 |
-
value: 83.571
|
557 |
-
- type: recall_at_3
|
558 |
-
value: 25.907999999999998
|
559 |
-
- type: recall_at_5
|
560 |
-
value: 31.214
|
561 |
-
- task:
|
562 |
-
type: Retrieval
|
563 |
-
dataset:
|
564 |
-
type: BeIR/cqadupstack
|
565 |
-
name: MTEB CQADupstackPhysicsRetrieval
|
566 |
-
config: default
|
567 |
-
split: test
|
568 |
-
revision: None
|
569 |
-
metrics:
|
570 |
-
- type: map_at_1
|
571 |
-
value: 27.695999999999998
|
572 |
-
- type: map_at_10
|
573 |
-
value: 37.018
|
574 |
-
- type: map_at_100
|
575 |
-
value: 38.263000000000005
|
576 |
-
- type: map_at_1000
|
577 |
-
value: 38.371
|
578 |
-
- type: map_at_3
|
579 |
-
value: 34.226
|
580 |
-
- type: map_at_5
|
581 |
-
value: 35.809999999999995
|
582 |
-
- type: mrr_at_1
|
583 |
-
value: 32.916000000000004
|
584 |
-
- type: mrr_at_10
|
585 |
-
value: 42.067
|
586 |
-
- type: mrr_at_100
|
587 |
-
value: 42.925000000000004
|
588 |
-
- type: mrr_at_1000
|
589 |
-
value: 42.978
|
590 |
-
- type: mrr_at_3
|
591 |
-
value: 39.637
|
592 |
-
- type: mrr_at_5
|
593 |
-
value: 41.134
|
594 |
-
- type: ndcg_at_1
|
595 |
-
value: 32.916000000000004
|
596 |
-
- type: ndcg_at_10
|
597 |
-
value: 42.539
|
598 |
-
- type: ndcg_at_100
|
599 |
-
value: 47.873
|
600 |
-
- type: ndcg_at_1000
|
601 |
-
value: 50.08200000000001
|
602 |
-
- type: ndcg_at_3
|
603 |
-
value: 37.852999999999994
|
604 |
-
- type: ndcg_at_5
|
605 |
-
value: 40.201
|
606 |
-
- type: precision_at_1
|
607 |
-
value: 32.916000000000004
|
608 |
-
- type: precision_at_10
|
609 |
-
value: 7.5840000000000005
|
610 |
-
- type: precision_at_100
|
611 |
-
value: 1.199
|
612 |
-
- type: precision_at_1000
|
613 |
-
value: 0.155
|
614 |
-
- type: precision_at_3
|
615 |
-
value: 17.485
|
616 |
-
- type: precision_at_5
|
617 |
-
value: 12.512
|
618 |
-
- type: recall_at_1
|
619 |
-
value: 27.695999999999998
|
620 |
-
- type: recall_at_10
|
621 |
-
value: 53.638
|
622 |
-
- type: recall_at_100
|
623 |
-
value: 76.116
|
624 |
-
- type: recall_at_1000
|
625 |
-
value: 91.069
|
626 |
-
- type: recall_at_3
|
627 |
-
value: 41.13
|
628 |
-
- type: recall_at_5
|
629 |
-
value: 46.872
|
630 |
-
- task:
|
631 |
-
type: Retrieval
|
632 |
-
dataset:
|
633 |
-
type: BeIR/cqadupstack
|
634 |
-
name: MTEB CQADupstackProgrammersRetrieval
|
635 |
-
config: default
|
636 |
-
split: test
|
637 |
-
revision: None
|
638 |
-
metrics:
|
639 |
-
- type: map_at_1
|
640 |
-
value: 24.108
|
641 |
-
- type: map_at_10
|
642 |
-
value: 33.372
|
643 |
-
- type: map_at_100
|
644 |
-
value: 34.656
|
645 |
-
- type: map_at_1000
|
646 |
-
value: 34.768
|
647 |
-
- type: map_at_3
|
648 |
-
value: 30.830999999999996
|
649 |
-
- type: map_at_5
|
650 |
-
value: 32.204
|
651 |
-
- type: mrr_at_1
|
652 |
-
value: 29.110000000000003
|
653 |
-
- type: mrr_at_10
|
654 |
-
value: 37.979
|
655 |
-
- type: mrr_at_100
|
656 |
-
value: 38.933
|
657 |
-
- type: mrr_at_1000
|
658 |
-
value: 38.988
|
659 |
-
- type: mrr_at_3
|
660 |
-
value: 35.731
|
661 |
-
- type: mrr_at_5
|
662 |
-
value: 36.963
|
663 |
-
- type: ndcg_at_1
|
664 |
-
value: 29.110000000000003
|
665 |
-
- type: ndcg_at_10
|
666 |
-
value: 38.635000000000005
|
667 |
-
- type: ndcg_at_100
|
668 |
-
value: 44.324999999999996
|
669 |
-
- type: ndcg_at_1000
|
670 |
-
value: 46.747
|
671 |
-
- type: ndcg_at_3
|
672 |
-
value: 34.37
|
673 |
-
- type: ndcg_at_5
|
674 |
-
value: 36.228
|
675 |
-
- type: precision_at_1
|
676 |
-
value: 29.110000000000003
|
677 |
-
- type: precision_at_10
|
678 |
-
value: 6.963
|
679 |
-
- type: precision_at_100
|
680 |
-
value: 1.146
|
681 |
-
- type: precision_at_1000
|
682 |
-
value: 0.152
|
683 |
-
- type: precision_at_3
|
684 |
-
value: 16.400000000000002
|
685 |
-
- type: precision_at_5
|
686 |
-
value: 11.552999999999999
|
687 |
-
- type: recall_at_1
|
688 |
-
value: 24.108
|
689 |
-
- type: recall_at_10
|
690 |
-
value: 49.597
|
691 |
-
- type: recall_at_100
|
692 |
-
value: 73.88900000000001
|
693 |
-
- type: recall_at_1000
|
694 |
-
value: 90.62400000000001
|
695 |
-
- type: recall_at_3
|
696 |
-
value: 37.662
|
697 |
-
- type: recall_at_5
|
698 |
-
value: 42.565
|
699 |
-
- task:
|
700 |
-
type: Retrieval
|
701 |
-
dataset:
|
702 |
-
type: BeIR/cqadupstack
|
703 |
-
name: MTEB CQADupstackRetrieval
|
704 |
-
config: default
|
705 |
-
split: test
|
706 |
-
revision: None
|
707 |
-
metrics:
|
708 |
-
- type: map_at_1
|
709 |
-
value: 25.00791666666667
|
710 |
-
- type: map_at_10
|
711 |
-
value: 33.287749999999996
|
712 |
-
- type: map_at_100
|
713 |
-
value: 34.41141666666667
|
714 |
-
- type: map_at_1000
|
715 |
-
value: 34.52583333333333
|
716 |
-
- type: map_at_3
|
717 |
-
value: 30.734416666666668
|
718 |
-
- type: map_at_5
|
719 |
-
value: 32.137166666666666
|
720 |
-
- type: mrr_at_1
|
721 |
-
value: 29.305666666666664
|
722 |
-
- type: mrr_at_10
|
723 |
-
value: 37.22966666666666
|
724 |
-
- type: mrr_at_100
|
725 |
-
value: 38.066583333333334
|
726 |
-
- type: mrr_at_1000
|
727 |
-
value: 38.12616666666667
|
728 |
-
- type: mrr_at_3
|
729 |
-
value: 34.92275
|
730 |
-
- type: mrr_at_5
|
731 |
-
value: 36.23333333333334
|
732 |
-
- type: ndcg_at_1
|
733 |
-
value: 29.305666666666664
|
734 |
-
- type: ndcg_at_10
|
735 |
-
value: 38.25533333333333
|
736 |
-
- type: ndcg_at_100
|
737 |
-
value: 43.25266666666666
|
738 |
-
- type: ndcg_at_1000
|
739 |
-
value: 45.63583333333334
|
740 |
-
- type: ndcg_at_3
|
741 |
-
value: 33.777166666666666
|
742 |
-
- type: ndcg_at_5
|
743 |
-
value: 35.85
|
744 |
-
- type: precision_at_1
|
745 |
-
value: 29.305666666666664
|
746 |
-
- type: precision_at_10
|
747 |
-
value: 6.596416666666667
|
748 |
-
- type: precision_at_100
|
749 |
-
value: 1.0784166666666668
|
750 |
-
- type: precision_at_1000
|
751 |
-
value: 0.14666666666666664
|
752 |
-
- type: precision_at_3
|
753 |
-
value: 15.31075
|
754 |
-
- type: precision_at_5
|
755 |
-
value: 10.830916666666667
|
756 |
-
- type: recall_at_1
|
757 |
-
value: 25.00791666666667
|
758 |
-
- type: recall_at_10
|
759 |
-
value: 49.10933333333333
|
760 |
-
- type: recall_at_100
|
761 |
-
value: 71.09216666666667
|
762 |
-
- type: recall_at_1000
|
763 |
-
value: 87.77725000000001
|
764 |
-
- type: recall_at_3
|
765 |
-
value: 36.660916666666665
|
766 |
-
- type: recall_at_5
|
767 |
-
value: 41.94149999999999
|
768 |
-
- task:
|
769 |
-
type: Retrieval
|
770 |
-
dataset:
|
771 |
-
type: BeIR/cqadupstack
|
772 |
-
name: MTEB CQADupstackStatsRetrieval
|
773 |
-
config: default
|
774 |
-
split: test
|
775 |
-
revision: None
|
776 |
-
metrics:
|
777 |
-
- type: map_at_1
|
778 |
-
value: 23.521
|
779 |
-
- type: map_at_10
|
780 |
-
value: 30.043
|
781 |
-
- type: map_at_100
|
782 |
-
value: 30.936000000000003
|
783 |
-
- type: map_at_1000
|
784 |
-
value: 31.022
|
785 |
-
- type: map_at_3
|
786 |
-
value: 27.926000000000002
|
787 |
-
- type: map_at_5
|
788 |
-
value: 29.076999999999998
|
789 |
-
- type: mrr_at_1
|
790 |
-
value: 26.227
|
791 |
-
- type: mrr_at_10
|
792 |
-
value: 32.822
|
793 |
-
- type: mrr_at_100
|
794 |
-
value: 33.61
|
795 |
-
- type: mrr_at_1000
|
796 |
-
value: 33.672000000000004
|
797 |
-
- type: mrr_at_3
|
798 |
-
value: 30.776999999999997
|
799 |
-
- type: mrr_at_5
|
800 |
-
value: 31.866
|
801 |
-
- type: ndcg_at_1
|
802 |
-
value: 26.227
|
803 |
-
- type: ndcg_at_10
|
804 |
-
value: 34.041
|
805 |
-
- type: ndcg_at_100
|
806 |
-
value: 38.394
|
807 |
-
- type: ndcg_at_1000
|
808 |
-
value: 40.732
|
809 |
-
- type: ndcg_at_3
|
810 |
-
value: 30.037999999999997
|
811 |
-
- type: ndcg_at_5
|
812 |
-
value: 31.845000000000002
|
813 |
-
- type: precision_at_1
|
814 |
-
value: 26.227
|
815 |
-
- type: precision_at_10
|
816 |
-
value: 5.244999999999999
|
817 |
-
- type: precision_at_100
|
818 |
-
value: 0.808
|
819 |
-
- type: precision_at_1000
|
820 |
-
value: 0.107
|
821 |
-
- type: precision_at_3
|
822 |
-
value: 12.679000000000002
|
823 |
-
- type: precision_at_5
|
824 |
-
value: 8.773
|
825 |
-
- type: recall_at_1
|
826 |
-
value: 23.521
|
827 |
-
- type: recall_at_10
|
828 |
-
value: 43.633
|
829 |
-
- type: recall_at_100
|
830 |
-
value: 63.126000000000005
|
831 |
-
- type: recall_at_1000
|
832 |
-
value: 80.765
|
833 |
-
- type: recall_at_3
|
834 |
-
value: 32.614
|
835 |
-
- type: recall_at_5
|
836 |
-
value: 37.15
|
837 |
-
- task:
|
838 |
-
type: Retrieval
|
839 |
-
dataset:
|
840 |
-
type: BeIR/cqadupstack
|
841 |
-
name: MTEB CQADupstackTexRetrieval
|
842 |
-
config: default
|
843 |
-
split: test
|
844 |
-
revision: None
|
845 |
-
metrics:
|
846 |
-
- type: map_at_1
|
847 |
-
value: 16.236
|
848 |
-
- type: map_at_10
|
849 |
-
value: 22.898
|
850 |
-
- type: map_at_100
|
851 |
-
value: 23.878
|
852 |
-
- type: map_at_1000
|
853 |
-
value: 24.009
|
854 |
-
- type: map_at_3
|
855 |
-
value: 20.87
|
856 |
-
- type: map_at_5
|
857 |
-
value: 22.025
|
858 |
-
- type: mrr_at_1
|
859 |
-
value: 19.339000000000002
|
860 |
-
- type: mrr_at_10
|
861 |
-
value: 26.382
|
862 |
-
- type: mrr_at_100
|
863 |
-
value: 27.245
|
864 |
-
- type: mrr_at_1000
|
865 |
-
value: 27.33
|
866 |
-
- type: mrr_at_3
|
867 |
-
value: 24.386
|
868 |
-
- type: mrr_at_5
|
869 |
-
value: 25.496000000000002
|
870 |
-
- type: ndcg_at_1
|
871 |
-
value: 19.339000000000002
|
872 |
-
- type: ndcg_at_10
|
873 |
-
value: 27.139999999999997
|
874 |
-
- type: ndcg_at_100
|
875 |
-
value: 31.944
|
876 |
-
- type: ndcg_at_1000
|
877 |
-
value: 35.077999999999996
|
878 |
-
- type: ndcg_at_3
|
879 |
-
value: 23.424
|
880 |
-
- type: ndcg_at_5
|
881 |
-
value: 25.188
|
882 |
-
- type: precision_at_1
|
883 |
-
value: 19.339000000000002
|
884 |
-
- type: precision_at_10
|
885 |
-
value: 4.8309999999999995
|
886 |
-
- type: precision_at_100
|
887 |
-
value: 0.845
|
888 |
-
- type: precision_at_1000
|
889 |
-
value: 0.128
|
890 |
-
- type: precision_at_3
|
891 |
-
value: 10.874
|
892 |
-
- type: precision_at_5
|
893 |
-
value: 7.825
|
894 |
-
- type: recall_at_1
|
895 |
-
value: 16.236
|
896 |
-
- type: recall_at_10
|
897 |
-
value: 36.513
|
898 |
-
- type: recall_at_100
|
899 |
-
value: 57.999
|
900 |
-
- type: recall_at_1000
|
901 |
-
value: 80.512
|
902 |
-
- type: recall_at_3
|
903 |
-
value: 26.179999999999996
|
904 |
-
- type: recall_at_5
|
905 |
-
value: 30.712
|
906 |
-
- task:
|
907 |
-
type: Retrieval
|
908 |
-
dataset:
|
909 |
-
type: BeIR/cqadupstack
|
910 |
-
name: MTEB CQADupstackUnixRetrieval
|
911 |
-
config: default
|
912 |
-
split: test
|
913 |
-
revision: None
|
914 |
-
metrics:
|
915 |
-
- type: map_at_1
|
916 |
-
value: 24.11
|
917 |
-
- type: map_at_10
|
918 |
-
value: 31.566
|
919 |
-
- type: map_at_100
|
920 |
-
value: 32.647
|
921 |
-
- type: map_at_1000
|
922 |
-
value: 32.753
|
923 |
-
- type: map_at_3
|
924 |
-
value: 29.24
|
925 |
-
- type: map_at_5
|
926 |
-
value: 30.564999999999998
|
927 |
-
- type: mrr_at_1
|
928 |
-
value: 28.265
|
929 |
-
- type: mrr_at_10
|
930 |
-
value: 35.504000000000005
|
931 |
-
- type: mrr_at_100
|
932 |
-
value: 36.436
|
933 |
-
- type: mrr_at_1000
|
934 |
-
value: 36.503
|
935 |
-
- type: mrr_at_3
|
936 |
-
value: 33.349000000000004
|
937 |
-
- type: mrr_at_5
|
938 |
-
value: 34.622
|
939 |
-
- type: ndcg_at_1
|
940 |
-
value: 28.265
|
941 |
-
- type: ndcg_at_10
|
942 |
-
value: 36.192
|
943 |
-
- type: ndcg_at_100
|
944 |
-
value: 41.388000000000005
|
945 |
-
- type: ndcg_at_1000
|
946 |
-
value: 43.948
|
947 |
-
- type: ndcg_at_3
|
948 |
-
value: 31.959
|
949 |
-
- type: ndcg_at_5
|
950 |
-
value: 33.998
|
951 |
-
- type: precision_at_1
|
952 |
-
value: 28.265
|
953 |
-
- type: precision_at_10
|
954 |
-
value: 5.989
|
955 |
-
- type: precision_at_100
|
956 |
-
value: 0.9650000000000001
|
957 |
-
- type: precision_at_1000
|
958 |
-
value: 0.13
|
959 |
-
- type: precision_at_3
|
960 |
-
value: 14.335
|
961 |
-
- type: precision_at_5
|
962 |
-
value: 10.112
|
963 |
-
- type: recall_at_1
|
964 |
-
value: 24.11
|
965 |
-
- type: recall_at_10
|
966 |
-
value: 46.418
|
967 |
-
- type: recall_at_100
|
968 |
-
value: 69.314
|
969 |
-
- type: recall_at_1000
|
970 |
-
value: 87.397
|
971 |
-
- type: recall_at_3
|
972 |
-
value: 34.724
|
973 |
-
- type: recall_at_5
|
974 |
-
value: 39.925
|
975 |
-
- task:
|
976 |
-
type: Retrieval
|
977 |
-
dataset:
|
978 |
-
type: BeIR/cqadupstack
|
979 |
-
name: MTEB CQADupstackWebmastersRetrieval
|
980 |
-
config: default
|
981 |
-
split: test
|
982 |
-
revision: None
|
983 |
-
metrics:
|
984 |
-
- type: map_at_1
|
985 |
-
value: 22.091
|
986 |
-
- type: map_at_10
|
987 |
-
value: 29.948999999999998
|
988 |
-
- type: map_at_100
|
989 |
-
value: 31.502000000000002
|
990 |
-
- type: map_at_1000
|
991 |
-
value: 31.713
|
992 |
-
- type: map_at_3
|
993 |
-
value: 27.464
|
994 |
-
- type: map_at_5
|
995 |
-
value: 28.968
|
996 |
-
- type: mrr_at_1
|
997 |
-
value: 26.482
|
998 |
-
- type: mrr_at_10
|
999 |
-
value: 34.009
|
1000 |
-
- type: mrr_at_100
|
1001 |
-
value: 35.081
|
1002 |
-
- type: mrr_at_1000
|
1003 |
-
value: 35.138000000000005
|
1004 |
-
- type: mrr_at_3
|
1005 |
-
value: 31.785000000000004
|
1006 |
-
- type: mrr_at_5
|
1007 |
-
value: 33.178999999999995
|
1008 |
-
- type: ndcg_at_1
|
1009 |
-
value: 26.482
|
1010 |
-
- type: ndcg_at_10
|
1011 |
-
value: 35.008
|
1012 |
-
- type: ndcg_at_100
|
1013 |
-
value: 41.272999999999996
|
1014 |
-
- type: ndcg_at_1000
|
1015 |
-
value: 43.972
|
1016 |
-
- type: ndcg_at_3
|
1017 |
-
value: 30.804
|
1018 |
-
- type: ndcg_at_5
|
1019 |
-
value: 33.046
|
1020 |
-
- type: precision_at_1
|
1021 |
-
value: 26.482
|
1022 |
-
- type: precision_at_10
|
1023 |
-
value: 6.462
|
1024 |
-
- type: precision_at_100
|
1025 |
-
value: 1.431
|
1026 |
-
- type: precision_at_1000
|
1027 |
-
value: 0.22899999999999998
|
1028 |
-
- type: precision_at_3
|
1029 |
-
value: 14.360999999999999
|
1030 |
-
- type: precision_at_5
|
1031 |
-
value: 10.474
|
1032 |
-
- type: recall_at_1
|
1033 |
-
value: 22.091
|
1034 |
-
- type: recall_at_10
|
1035 |
-
value: 45.125
|
1036 |
-
- type: recall_at_100
|
1037 |
-
value: 72.313
|
1038 |
-
- type: recall_at_1000
|
1039 |
-
value: 89.503
|
1040 |
-
- type: recall_at_3
|
1041 |
-
value: 33.158
|
1042 |
-
- type: recall_at_5
|
1043 |
-
value: 39.086999999999996
|
1044 |
-
- task:
|
1045 |
-
type: Retrieval
|
1046 |
-
dataset:
|
1047 |
-
type: BeIR/cqadupstack
|
1048 |
-
name: MTEB CQADupstackWordpressRetrieval
|
1049 |
-
config: default
|
1050 |
-
split: test
|
1051 |
-
revision: None
|
1052 |
-
metrics:
|
1053 |
-
- type: map_at_1
|
1054 |
-
value: 19.883
|
1055 |
-
- type: map_at_10
|
1056 |
-
value: 26.951000000000004
|
1057 |
-
- type: map_at_100
|
1058 |
-
value: 27.927999999999997
|
1059 |
-
- type: map_at_1000
|
1060 |
-
value: 28.022000000000002
|
1061 |
-
- type: map_at_3
|
1062 |
-
value: 24.616
|
1063 |
-
- type: map_at_5
|
1064 |
-
value: 25.917
|
1065 |
-
- type: mrr_at_1
|
1066 |
-
value: 21.996
|
1067 |
-
- type: mrr_at_10
|
1068 |
-
value: 29.221000000000004
|
1069 |
-
- type: mrr_at_100
|
1070 |
-
value: 30.024
|
1071 |
-
- type: mrr_at_1000
|
1072 |
-
value: 30.095
|
1073 |
-
- type: mrr_at_3
|
1074 |
-
value: 26.833000000000002
|
1075 |
-
- type: mrr_at_5
|
1076 |
-
value: 28.155
|
1077 |
-
- type: ndcg_at_1
|
1078 |
-
value: 21.996
|
1079 |
-
- type: ndcg_at_10
|
1080 |
-
value: 31.421
|
1081 |
-
- type: ndcg_at_100
|
1082 |
-
value: 36.237
|
1083 |
-
- type: ndcg_at_1000
|
1084 |
-
value: 38.744
|
1085 |
-
- type: ndcg_at_3
|
1086 |
-
value: 26.671
|
1087 |
-
- type: ndcg_at_5
|
1088 |
-
value: 28.907
|
1089 |
-
- type: precision_at_1
|
1090 |
-
value: 21.996
|
1091 |
-
- type: precision_at_10
|
1092 |
-
value: 5.009
|
1093 |
-
- type: precision_at_100
|
1094 |
-
value: 0.799
|
1095 |
-
- type: precision_at_1000
|
1096 |
-
value: 0.11199999999999999
|
1097 |
-
- type: precision_at_3
|
1098 |
-
value: 11.275
|
1099 |
-
- type: precision_at_5
|
1100 |
-
value: 8.059
|
1101 |
-
- type: recall_at_1
|
1102 |
-
value: 19.883
|
1103 |
-
- type: recall_at_10
|
1104 |
-
value: 43.132999999999996
|
1105 |
-
- type: recall_at_100
|
1106 |
-
value: 65.654
|
1107 |
-
- type: recall_at_1000
|
1108 |
-
value: 84.492
|
1109 |
-
- type: recall_at_3
|
1110 |
-
value: 30.209000000000003
|
1111 |
-
- type: recall_at_5
|
1112 |
-
value: 35.616
|
1113 |
-
- task:
|
1114 |
-
type: Retrieval
|
1115 |
-
dataset:
|
1116 |
-
type: climate-fever
|
1117 |
-
name: MTEB ClimateFEVER
|
1118 |
-
config: default
|
1119 |
-
split: test
|
1120 |
-
revision: None
|
1121 |
-
metrics:
|
1122 |
-
- type: map_at_1
|
1123 |
-
value: 17.756
|
1124 |
-
- type: map_at_10
|
1125 |
-
value: 30.378
|
1126 |
-
- type: map_at_100
|
1127 |
-
value: 32.537
|
1128 |
-
- type: map_at_1000
|
1129 |
-
value: 32.717
|
1130 |
-
- type: map_at_3
|
1131 |
-
value: 25.599
|
1132 |
-
- type: map_at_5
|
1133 |
-
value: 28.372999999999998
|
1134 |
-
- type: mrr_at_1
|
1135 |
-
value: 41.303
|
1136 |
-
- type: mrr_at_10
|
1137 |
-
value: 53.483999999999995
|
1138 |
-
- type: mrr_at_100
|
1139 |
-
value: 54.106
|
1140 |
-
- type: mrr_at_1000
|
1141 |
-
value: 54.127
|
1142 |
-
- type: mrr_at_3
|
1143 |
-
value: 50.315
|
1144 |
-
- type: mrr_at_5
|
1145 |
-
value: 52.396
|
1146 |
-
- type: ndcg_at_1
|
1147 |
-
value: 41.303
|
1148 |
-
- type: ndcg_at_10
|
1149 |
-
value: 40.503
|
1150 |
-
- type: ndcg_at_100
|
1151 |
-
value: 47.821000000000005
|
1152 |
-
- type: ndcg_at_1000
|
1153 |
-
value: 50.788
|
1154 |
-
- type: ndcg_at_3
|
1155 |
-
value: 34.364
|
1156 |
-
- type: ndcg_at_5
|
1157 |
-
value: 36.818
|
1158 |
-
- type: precision_at_1
|
1159 |
-
value: 41.303
|
1160 |
-
- type: precision_at_10
|
1161 |
-
value: 12.463000000000001
|
1162 |
-
- type: precision_at_100
|
1163 |
-
value: 2.037
|
1164 |
-
- type: precision_at_1000
|
1165 |
-
value: 0.26
|
1166 |
-
- type: precision_at_3
|
1167 |
-
value: 25.798
|
1168 |
-
- type: precision_at_5
|
1169 |
-
value: 19.896
|
1170 |
-
- type: recall_at_1
|
1171 |
-
value: 17.756
|
1172 |
-
- type: recall_at_10
|
1173 |
-
value: 46.102
|
1174 |
-
- type: recall_at_100
|
1175 |
-
value: 70.819
|
1176 |
-
- type: recall_at_1000
|
1177 |
-
value: 87.21799999999999
|
1178 |
-
- type: recall_at_3
|
1179 |
-
value: 30.646
|
1180 |
-
- type: recall_at_5
|
1181 |
-
value: 38.022
|
1182 |
-
- task:
|
1183 |
-
type: Retrieval
|
1184 |
-
dataset:
|
1185 |
-
type: dbpedia-entity
|
1186 |
-
name: MTEB DBPedia
|
1187 |
-
config: default
|
1188 |
-
split: test
|
1189 |
-
revision: None
|
1190 |
-
metrics:
|
1191 |
-
- type: map_at_1
|
1192 |
-
value: 9.033
|
1193 |
-
- type: map_at_10
|
1194 |
-
value: 20.584
|
1195 |
-
- type: map_at_100
|
1196 |
-
value: 29.518
|
1197 |
-
- type: map_at_1000
|
1198 |
-
value: 31.186000000000003
|
1199 |
-
- type: map_at_3
|
1200 |
-
value: 14.468
|
1201 |
-
- type: map_at_5
|
1202 |
-
value: 17.177
|
1203 |
-
- type: mrr_at_1
|
1204 |
-
value: 69.75
|
1205 |
-
- type: mrr_at_10
|
1206 |
-
value: 77.025
|
1207 |
-
- type: mrr_at_100
|
1208 |
-
value: 77.36699999999999
|
1209 |
-
- type: mrr_at_1000
|
1210 |
-
value: 77.373
|
1211 |
-
- type: mrr_at_3
|
1212 |
-
value: 75.583
|
1213 |
-
- type: mrr_at_5
|
1214 |
-
value: 76.396
|
1215 |
-
- type: ndcg_at_1
|
1216 |
-
value: 58.5
|
1217 |
-
- type: ndcg_at_10
|
1218 |
-
value: 45.033
|
1219 |
-
- type: ndcg_at_100
|
1220 |
-
value: 49.071
|
1221 |
-
- type: ndcg_at_1000
|
1222 |
-
value: 56.056
|
1223 |
-
- type: ndcg_at_3
|
1224 |
-
value: 49.936
|
1225 |
-
- type: ndcg_at_5
|
1226 |
-
value: 47.471999999999994
|
1227 |
-
- type: precision_at_1
|
1228 |
-
value: 69.75
|
1229 |
-
- type: precision_at_10
|
1230 |
-
value: 35.775
|
1231 |
-
- type: precision_at_100
|
1232 |
-
value: 11.594999999999999
|
1233 |
-
- type: precision_at_1000
|
1234 |
-
value: 2.062
|
1235 |
-
- type: precision_at_3
|
1236 |
-
value: 52.5
|
1237 |
-
- type: precision_at_5
|
1238 |
-
value: 45.300000000000004
|
1239 |
-
- type: recall_at_1
|
1240 |
-
value: 9.033
|
1241 |
-
- type: recall_at_10
|
1242 |
-
value: 26.596999999999998
|
1243 |
-
- type: recall_at_100
|
1244 |
-
value: 54.607000000000006
|
1245 |
-
- type: recall_at_1000
|
1246 |
-
value: 76.961
|
1247 |
-
- type: recall_at_3
|
1248 |
-
value: 15.754999999999999
|
1249 |
-
- type: recall_at_5
|
1250 |
-
value: 20.033
|
1251 |
-
- task:
|
1252 |
-
type: Classification
|
1253 |
-
dataset:
|
1254 |
-
type: mteb/emotion
|
1255 |
-
name: MTEB EmotionClassification
|
1256 |
-
config: default
|
1257 |
-
split: test
|
1258 |
-
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1259 |
-
metrics:
|
1260 |
-
- type: accuracy
|
1261 |
-
value: 48.345000000000006
|
1262 |
-
- type: f1
|
1263 |
-
value: 43.4514918068706
|
1264 |
-
- task:
|
1265 |
-
type: Retrieval
|
1266 |
-
dataset:
|
1267 |
-
type: fever
|
1268 |
-
name: MTEB FEVER
|
1269 |
-
config: default
|
1270 |
-
split: test
|
1271 |
-
revision: None
|
1272 |
-
metrics:
|
1273 |
-
- type: map_at_1
|
1274 |
-
value: 71.29100000000001
|
1275 |
-
- type: map_at_10
|
1276 |
-
value: 81.059
|
1277 |
-
- type: map_at_100
|
1278 |
-
value: 81.341
|
1279 |
-
- type: map_at_1000
|
1280 |
-
value: 81.355
|
1281 |
-
- type: map_at_3
|
1282 |
-
value: 79.74799999999999
|
1283 |
-
- type: map_at_5
|
1284 |
-
value: 80.612
|
1285 |
-
- type: mrr_at_1
|
1286 |
-
value: 76.40299999999999
|
1287 |
-
- type: mrr_at_10
|
1288 |
-
value: 84.615
|
1289 |
-
- type: mrr_at_100
|
1290 |
-
value: 84.745
|
1291 |
-
- type: mrr_at_1000
|
1292 |
-
value: 84.748
|
1293 |
-
- type: mrr_at_3
|
1294 |
-
value: 83.776
|
1295 |
-
- type: mrr_at_5
|
1296 |
-
value: 84.343
|
1297 |
-
- type: ndcg_at_1
|
1298 |
-
value: 76.40299999999999
|
1299 |
-
- type: ndcg_at_10
|
1300 |
-
value: 84.981
|
1301 |
-
- type: ndcg_at_100
|
1302 |
-
value: 86.00999999999999
|
1303 |
-
- type: ndcg_at_1000
|
1304 |
-
value: 86.252
|
1305 |
-
- type: ndcg_at_3
|
1306 |
-
value: 82.97
|
1307 |
-
- type: ndcg_at_5
|
1308 |
-
value: 84.152
|
1309 |
-
- type: precision_at_1
|
1310 |
-
value: 76.40299999999999
|
1311 |
-
- type: precision_at_10
|
1312 |
-
value: 10.446
|
1313 |
-
- type: precision_at_100
|
1314 |
-
value: 1.1199999999999999
|
1315 |
-
- type: precision_at_1000
|
1316 |
-
value: 0.116
|
1317 |
-
- type: precision_at_3
|
1318 |
-
value: 32.147999999999996
|
1319 |
-
- type: precision_at_5
|
1320 |
-
value: 20.135
|
1321 |
-
- type: recall_at_1
|
1322 |
-
value: 71.29100000000001
|
1323 |
-
- type: recall_at_10
|
1324 |
-
value: 93.232
|
1325 |
-
- type: recall_at_100
|
1326 |
-
value: 97.363
|
1327 |
-
- type: recall_at_1000
|
1328 |
-
value: 98.905
|
1329 |
-
- type: recall_at_3
|
1330 |
-
value: 87.893
|
1331 |
-
- type: recall_at_5
|
1332 |
-
value: 90.804
|
1333 |
-
- task:
|
1334 |
-
type: Retrieval
|
1335 |
-
dataset:
|
1336 |
-
type: fiqa
|
1337 |
-
name: MTEB FiQA2018
|
1338 |
-
config: default
|
1339 |
-
split: test
|
1340 |
-
revision: None
|
1341 |
-
metrics:
|
1342 |
-
- type: map_at_1
|
1343 |
-
value: 18.667
|
1344 |
-
- type: map_at_10
|
1345 |
-
value: 30.853
|
1346 |
-
- type: map_at_100
|
1347 |
-
value: 32.494
|
1348 |
-
- type: map_at_1000
|
1349 |
-
value: 32.677
|
1350 |
-
- type: map_at_3
|
1351 |
-
value: 26.91
|
1352 |
-
- type: map_at_5
|
1353 |
-
value: 29.099000000000004
|
1354 |
-
- type: mrr_at_1
|
1355 |
-
value: 37.191
|
1356 |
-
- type: mrr_at_10
|
1357 |
-
value: 46.171
|
1358 |
-
- type: mrr_at_100
|
1359 |
-
value: 47.056
|
1360 |
-
- type: mrr_at_1000
|
1361 |
-
value: 47.099000000000004
|
1362 |
-
- type: mrr_at_3
|
1363 |
-
value: 44.059
|
1364 |
-
- type: mrr_at_5
|
1365 |
-
value: 45.147
|
1366 |
-
- type: ndcg_at_1
|
1367 |
-
value: 37.191
|
1368 |
-
- type: ndcg_at_10
|
1369 |
-
value: 38.437
|
1370 |
-
- type: ndcg_at_100
|
1371 |
-
value: 44.62
|
1372 |
-
- type: ndcg_at_1000
|
1373 |
-
value: 47.795
|
1374 |
-
- type: ndcg_at_3
|
1375 |
-
value: 35.003
|
1376 |
-
- type: ndcg_at_5
|
1377 |
-
value: 36.006
|
1378 |
-
- type: precision_at_1
|
1379 |
-
value: 37.191
|
1380 |
-
- type: precision_at_10
|
1381 |
-
value: 10.586
|
1382 |
-
- type: precision_at_100
|
1383 |
-
value: 1.688
|
1384 |
-
- type: precision_at_1000
|
1385 |
-
value: 0.22699999999999998
|
1386 |
-
- type: precision_at_3
|
1387 |
-
value: 23.302
|
1388 |
-
- type: precision_at_5
|
1389 |
-
value: 17.006
|
1390 |
-
- type: recall_at_1
|
1391 |
-
value: 18.667
|
1392 |
-
- type: recall_at_10
|
1393 |
-
value: 45.367000000000004
|
1394 |
-
- type: recall_at_100
|
1395 |
-
value: 68.207
|
1396 |
-
- type: recall_at_1000
|
1397 |
-
value: 87.072
|
1398 |
-
- type: recall_at_3
|
1399 |
-
value: 32.129000000000005
|
1400 |
-
- type: recall_at_5
|
1401 |
-
value: 37.719
|
1402 |
-
- task:
|
1403 |
-
type: Retrieval
|
1404 |
-
dataset:
|
1405 |
-
type: hotpotqa
|
1406 |
-
name: MTEB HotpotQA
|
1407 |
-
config: default
|
1408 |
-
split: test
|
1409 |
-
revision: None
|
1410 |
-
metrics:
|
1411 |
-
- type: map_at_1
|
1412 |
-
value: 39.494
|
1413 |
-
- type: map_at_10
|
1414 |
-
value: 66.223
|
1415 |
-
- type: map_at_100
|
1416 |
-
value: 67.062
|
1417 |
-
- type: map_at_1000
|
1418 |
-
value: 67.11500000000001
|
1419 |
-
- type: map_at_3
|
1420 |
-
value: 62.867
|
1421 |
-
- type: map_at_5
|
1422 |
-
value: 64.994
|
1423 |
-
- type: mrr_at_1
|
1424 |
-
value: 78.987
|
1425 |
-
- type: mrr_at_10
|
1426 |
-
value: 84.585
|
1427 |
-
- type: mrr_at_100
|
1428 |
-
value: 84.773
|
1429 |
-
- type: mrr_at_1000
|
1430 |
-
value: 84.77900000000001
|
1431 |
-
- type: mrr_at_3
|
1432 |
-
value: 83.592
|
1433 |
-
- type: mrr_at_5
|
1434 |
-
value: 84.235
|
1435 |
-
- type: ndcg_at_1
|
1436 |
-
value: 78.987
|
1437 |
-
- type: ndcg_at_10
|
1438 |
-
value: 73.64
|
1439 |
-
- type: ndcg_at_100
|
1440 |
-
value: 76.519
|
1441 |
-
- type: ndcg_at_1000
|
1442 |
-
value: 77.51
|
1443 |
-
- type: ndcg_at_3
|
1444 |
-
value: 68.893
|
1445 |
-
- type: ndcg_at_5
|
1446 |
-
value: 71.585
|
1447 |
-
- type: precision_at_1
|
1448 |
-
value: 78.987
|
1449 |
-
- type: precision_at_10
|
1450 |
-
value: 15.529000000000002
|
1451 |
-
- type: precision_at_100
|
1452 |
-
value: 1.7770000000000001
|
1453 |
-
- type: precision_at_1000
|
1454 |
-
value: 0.191
|
1455 |
-
- type: precision_at_3
|
1456 |
-
value: 44.808
|
1457 |
-
- type: precision_at_5
|
1458 |
-
value: 29.006999999999998
|
1459 |
-
- type: recall_at_1
|
1460 |
-
value: 39.494
|
1461 |
-
- type: recall_at_10
|
1462 |
-
value: 77.643
|
1463 |
-
- type: recall_at_100
|
1464 |
-
value: 88.825
|
1465 |
-
- type: recall_at_1000
|
1466 |
-
value: 95.321
|
1467 |
-
- type: recall_at_3
|
1468 |
-
value: 67.211
|
1469 |
-
- type: recall_at_5
|
1470 |
-
value: 72.519
|
1471 |
-
- task:
|
1472 |
-
type: Classification
|
1473 |
-
dataset:
|
1474 |
-
type: mteb/imdb
|
1475 |
-
name: MTEB ImdbClassification
|
1476 |
-
config: default
|
1477 |
-
split: test
|
1478 |
-
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1479 |
-
metrics:
|
1480 |
-
- type: accuracy
|
1481 |
-
value: 85.55959999999999
|
1482 |
-
- type: ap
|
1483 |
-
value: 80.7246500384617
|
1484 |
-
- type: f1
|
1485 |
-
value: 85.52336485065454
|
1486 |
-
- task:
|
1487 |
-
type: Retrieval
|
1488 |
-
dataset:
|
1489 |
-
type: msmarco
|
1490 |
-
name: MTEB MSMARCO
|
1491 |
-
config: default
|
1492 |
-
split: dev
|
1493 |
-
revision: None
|
1494 |
-
metrics:
|
1495 |
-
- type: map_at_1
|
1496 |
-
value: 23.631
|
1497 |
-
- type: map_at_10
|
1498 |
-
value: 36.264
|
1499 |
-
- type: map_at_100
|
1500 |
-
value: 37.428
|
1501 |
-
- type: map_at_1000
|
1502 |
-
value: 37.472
|
1503 |
-
- type: map_at_3
|
1504 |
-
value: 32.537
|
1505 |
-
- type: map_at_5
|
1506 |
-
value: 34.746
|
1507 |
-
- type: mrr_at_1
|
1508 |
-
value: 24.312
|
1509 |
-
- type: mrr_at_10
|
1510 |
-
value: 36.858000000000004
|
1511 |
-
- type: mrr_at_100
|
1512 |
-
value: 37.966
|
1513 |
-
- type: mrr_at_1000
|
1514 |
-
value: 38.004
|
1515 |
-
- type: mrr_at_3
|
1516 |
-
value: 33.188
|
1517 |
-
- type: mrr_at_5
|
1518 |
-
value: 35.367
|
1519 |
-
- type: ndcg_at_1
|
1520 |
-
value: 24.312
|
1521 |
-
- type: ndcg_at_10
|
1522 |
-
value: 43.126999999999995
|
1523 |
-
- type: ndcg_at_100
|
1524 |
-
value: 48.642
|
1525 |
-
- type: ndcg_at_1000
|
1526 |
-
value: 49.741
|
1527 |
-
- type: ndcg_at_3
|
1528 |
-
value: 35.589
|
1529 |
-
- type: ndcg_at_5
|
1530 |
-
value: 39.515
|
1531 |
-
- type: precision_at_1
|
1532 |
-
value: 24.312
|
1533 |
-
- type: precision_at_10
|
1534 |
-
value: 6.699
|
1535 |
-
- type: precision_at_100
|
1536 |
-
value: 0.9450000000000001
|
1537 |
-
- type: precision_at_1000
|
1538 |
-
value: 0.104
|
1539 |
-
- type: precision_at_3
|
1540 |
-
value: 15.153
|
1541 |
-
- type: precision_at_5
|
1542 |
-
value: 11.065999999999999
|
1543 |
-
- type: recall_at_1
|
1544 |
-
value: 23.631
|
1545 |
-
- type: recall_at_10
|
1546 |
-
value: 64.145
|
1547 |
-
- type: recall_at_100
|
1548 |
-
value: 89.41
|
1549 |
-
- type: recall_at_1000
|
1550 |
-
value: 97.83500000000001
|
1551 |
-
- type: recall_at_3
|
1552 |
-
value: 43.769000000000005
|
1553 |
-
- type: recall_at_5
|
1554 |
-
value: 53.169
|
1555 |
-
- task:
|
1556 |
-
type: Classification
|
1557 |
-
dataset:
|
1558 |
-
type: mteb/mtop_domain
|
1559 |
-
name: MTEB MTOPDomainClassification (en)
|
1560 |
-
config: en
|
1561 |
-
split: test
|
1562 |
-
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1563 |
-
metrics:
|
1564 |
-
- type: accuracy
|
1565 |
-
value: 93.4108527131783
|
1566 |
-
- type: f1
|
1567 |
-
value: 93.1415880261038
|
1568 |
-
- task:
|
1569 |
-
type: Classification
|
1570 |
-
dataset:
|
1571 |
-
type: mteb/mtop_intent
|
1572 |
-
name: MTEB MTOPIntentClassification (en)
|
1573 |
-
config: en
|
1574 |
-
split: test
|
1575 |
-
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1576 |
-
metrics:
|
1577 |
-
- type: accuracy
|
1578 |
-
value: 77.24806201550388
|
1579 |
-
- type: f1
|
1580 |
-
value: 60.531916308197175
|
1581 |
-
- task:
|
1582 |
-
type: Classification
|
1583 |
-
dataset:
|
1584 |
-
type: mteb/amazon_massive_intent
|
1585 |
-
name: MTEB MassiveIntentClassification (en)
|
1586 |
-
config: en
|
1587 |
-
split: test
|
1588 |
-
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1589 |
-
metrics:
|
1590 |
-
- type: accuracy
|
1591 |
-
value: 73.71553463349024
|
1592 |
-
- type: f1
|
1593 |
-
value: 71.70753174900791
|
1594 |
-
- task:
|
1595 |
-
type: Classification
|
1596 |
-
dataset:
|
1597 |
-
type: mteb/amazon_massive_scenario
|
1598 |
-
name: MTEB MassiveScenarioClassification (en)
|
1599 |
-
config: en
|
1600 |
-
split: test
|
1601 |
-
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1602 |
-
metrics:
|
1603 |
-
- type: accuracy
|
1604 |
-
value: 77.79757901815736
|
1605 |
-
- type: f1
|
1606 |
-
value: 77.83719850433258
|
1607 |
-
- task:
|
1608 |
-
type: Clustering
|
1609 |
-
dataset:
|
1610 |
-
type: mteb/medrxiv-clustering-p2p
|
1611 |
-
name: MTEB MedrxivClusteringP2P
|
1612 |
-
config: default
|
1613 |
-
split: test
|
1614 |
-
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1615 |
-
metrics:
|
1616 |
-
- type: v_measure
|
1617 |
-
value: 33.74193296622113
|
1618 |
-
- task:
|
1619 |
-
type: Clustering
|
1620 |
-
dataset:
|
1621 |
-
type: mteb/medrxiv-clustering-s2s
|
1622 |
-
name: MTEB MedrxivClusteringS2S
|
1623 |
-
config: default
|
1624 |
-
split: test
|
1625 |
-
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1626 |
-
metrics:
|
1627 |
-
- type: v_measure
|
1628 |
-
value: 30.64257594108566
|
1629 |
-
- task:
|
1630 |
-
type: Reranking
|
1631 |
-
dataset:
|
1632 |
-
type: mteb/mind_small
|
1633 |
-
name: MTEB MindSmallReranking
|
1634 |
-
config: default
|
1635 |
-
split: test
|
1636 |
-
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1637 |
-
metrics:
|
1638 |
-
- type: map
|
1639 |
-
value: 30.811018518883625
|
1640 |
-
- type: mrr
|
1641 |
-
value: 31.910376577445003
|
1642 |
-
- task:
|
1643 |
-
type: Retrieval
|
1644 |
-
dataset:
|
1645 |
-
type: nfcorpus
|
1646 |
-
name: MTEB NFCorpus
|
1647 |
-
config: default
|
1648 |
-
split: test
|
1649 |
-
revision: None
|
1650 |
-
metrics:
|
1651 |
-
- type: map_at_1
|
1652 |
-
value: 5.409
|
1653 |
-
- type: map_at_10
|
1654 |
-
value: 13.093
|
1655 |
-
- type: map_at_100
|
1656 |
-
value: 16.256999999999998
|
1657 |
-
- type: map_at_1000
|
1658 |
-
value: 17.617
|
1659 |
-
- type: map_at_3
|
1660 |
-
value: 9.555
|
1661 |
-
- type: map_at_5
|
1662 |
-
value: 11.428
|
1663 |
-
- type: mrr_at_1
|
1664 |
-
value: 45.201
|
1665 |
-
- type: mrr_at_10
|
1666 |
-
value: 54.179
|
1667 |
-
- type: mrr_at_100
|
1668 |
-
value: 54.812000000000005
|
1669 |
-
- type: mrr_at_1000
|
1670 |
-
value: 54.840999999999994
|
1671 |
-
- type: mrr_at_3
|
1672 |
-
value: 51.909000000000006
|
1673 |
-
- type: mrr_at_5
|
1674 |
-
value: 53.519000000000005
|
1675 |
-
- type: ndcg_at_1
|
1676 |
-
value: 43.189
|
1677 |
-
- type: ndcg_at_10
|
1678 |
-
value: 35.028
|
1679 |
-
- type: ndcg_at_100
|
1680 |
-
value: 31.226
|
1681 |
-
- type: ndcg_at_1000
|
1682 |
-
value: 39.678000000000004
|
1683 |
-
- type: ndcg_at_3
|
1684 |
-
value: 40.596
|
1685 |
-
- type: ndcg_at_5
|
1686 |
-
value: 38.75
|
1687 |
-
- type: precision_at_1
|
1688 |
-
value: 44.582
|
1689 |
-
- type: precision_at_10
|
1690 |
-
value: 25.974999999999998
|
1691 |
-
- type: precision_at_100
|
1692 |
-
value: 7.793
|
1693 |
-
- type: precision_at_1000
|
1694 |
-
value: 2.036
|
1695 |
-
- type: precision_at_3
|
1696 |
-
value: 38.493
|
1697 |
-
- type: precision_at_5
|
1698 |
-
value: 33.994
|
1699 |
-
- type: recall_at_1
|
1700 |
-
value: 5.409
|
1701 |
-
- type: recall_at_10
|
1702 |
-
value: 16.875999999999998
|
1703 |
-
- type: recall_at_100
|
1704 |
-
value: 30.316
|
1705 |
-
- type: recall_at_1000
|
1706 |
-
value: 60.891
|
1707 |
-
- type: recall_at_3
|
1708 |
-
value: 10.688
|
1709 |
-
- type: recall_at_5
|
1710 |
-
value: 13.832
|
1711 |
-
- task:
|
1712 |
-
type: Retrieval
|
1713 |
-
dataset:
|
1714 |
-
type: nq
|
1715 |
-
name: MTEB NQ
|
1716 |
-
config: default
|
1717 |
-
split: test
|
1718 |
-
revision: None
|
1719 |
-
metrics:
|
1720 |
-
- type: map_at_1
|
1721 |
-
value: 36.375
|
1722 |
-
- type: map_at_10
|
1723 |
-
value: 51.991
|
1724 |
-
- type: map_at_100
|
1725 |
-
value: 52.91400000000001
|
1726 |
-
- type: map_at_1000
|
1727 |
-
value: 52.93600000000001
|
1728 |
-
- type: map_at_3
|
1729 |
-
value: 48.014
|
1730 |
-
- type: map_at_5
|
1731 |
-
value: 50.381
|
1732 |
-
- type: mrr_at_1
|
1733 |
-
value: 40.759
|
1734 |
-
- type: mrr_at_10
|
1735 |
-
value: 54.617000000000004
|
1736 |
-
- type: mrr_at_100
|
1737 |
-
value: 55.301
|
1738 |
-
- type: mrr_at_1000
|
1739 |
-
value: 55.315000000000005
|
1740 |
-
- type: mrr_at_3
|
1741 |
-
value: 51.516
|
1742 |
-
- type: mrr_at_5
|
1743 |
-
value: 53.435
|
1744 |
-
- type: ndcg_at_1
|
1745 |
-
value: 40.759
|
1746 |
-
- type: ndcg_at_10
|
1747 |
-
value: 59.384
|
1748 |
-
- type: ndcg_at_100
|
1749 |
-
value: 63.157
|
1750 |
-
- type: ndcg_at_1000
|
1751 |
-
value: 63.654999999999994
|
1752 |
-
- type: ndcg_at_3
|
1753 |
-
value: 52.114000000000004
|
1754 |
-
- type: ndcg_at_5
|
1755 |
-
value: 55.986000000000004
|
1756 |
-
- type: precision_at_1
|
1757 |
-
value: 40.759
|
1758 |
-
- type: precision_at_10
|
1759 |
-
value: 9.411999999999999
|
1760 |
-
- type: precision_at_100
|
1761 |
-
value: 1.153
|
1762 |
-
- type: precision_at_1000
|
1763 |
-
value: 0.12
|
1764 |
-
- type: precision_at_3
|
1765 |
-
value: 23.329
|
1766 |
-
- type: precision_at_5
|
1767 |
-
value: 16.256999999999998
|
1768 |
-
- type: recall_at_1
|
1769 |
-
value: 36.375
|
1770 |
-
- type: recall_at_10
|
1771 |
-
value: 79.053
|
1772 |
-
- type: recall_at_100
|
1773 |
-
value: 95.167
|
1774 |
-
- type: recall_at_1000
|
1775 |
-
value: 98.82
|
1776 |
-
- type: recall_at_3
|
1777 |
-
value: 60.475
|
1778 |
-
- type: recall_at_5
|
1779 |
-
value: 69.327
|
1780 |
-
- task:
|
1781 |
-
type: Retrieval
|
1782 |
-
dataset:
|
1783 |
-
type: quora
|
1784 |
-
name: MTEB QuoraRetrieval
|
1785 |
-
config: default
|
1786 |
-
split: test
|
1787 |
-
revision: None
|
1788 |
-
metrics:
|
1789 |
-
- type: map_at_1
|
1790 |
-
value: 70.256
|
1791 |
-
- type: map_at_10
|
1792 |
-
value: 83.8
|
1793 |
-
- type: map_at_100
|
1794 |
-
value: 84.425
|
1795 |
-
- type: map_at_1000
|
1796 |
-
value: 84.444
|
1797 |
-
- type: map_at_3
|
1798 |
-
value: 80.906
|
1799 |
-
- type: map_at_5
|
1800 |
-
value: 82.717
|
1801 |
-
- type: mrr_at_1
|
1802 |
-
value: 80.97999999999999
|
1803 |
-
- type: mrr_at_10
|
1804 |
-
value: 87.161
|
1805 |
-
- type: mrr_at_100
|
1806 |
-
value: 87.262
|
1807 |
-
- type: mrr_at_1000
|
1808 |
-
value: 87.263
|
1809 |
-
- type: mrr_at_3
|
1810 |
-
value: 86.175
|
1811 |
-
- type: mrr_at_5
|
1812 |
-
value: 86.848
|
1813 |
-
- type: ndcg_at_1
|
1814 |
-
value: 80.97999999999999
|
1815 |
-
- type: ndcg_at_10
|
1816 |
-
value: 87.697
|
1817 |
-
- type: ndcg_at_100
|
1818 |
-
value: 88.959
|
1819 |
-
- type: ndcg_at_1000
|
1820 |
-
value: 89.09899999999999
|
1821 |
-
- type: ndcg_at_3
|
1822 |
-
value: 84.83800000000001
|
1823 |
-
- type: ndcg_at_5
|
1824 |
-
value: 86.401
|
1825 |
-
- type: precision_at_1
|
1826 |
-
value: 80.97999999999999
|
1827 |
-
- type: precision_at_10
|
1828 |
-
value: 13.261000000000001
|
1829 |
-
- type: precision_at_100
|
1830 |
-
value: 1.5150000000000001
|
1831 |
-
- type: precision_at_1000
|
1832 |
-
value: 0.156
|
1833 |
-
- type: precision_at_3
|
1834 |
-
value: 37.01
|
1835 |
-
- type: precision_at_5
|
1836 |
-
value: 24.298000000000002
|
1837 |
-
- type: recall_at_1
|
1838 |
-
value: 70.256
|
1839 |
-
- type: recall_at_10
|
1840 |
-
value: 94.935
|
1841 |
-
- type: recall_at_100
|
1842 |
-
value: 99.274
|
1843 |
-
- type: recall_at_1000
|
1844 |
-
value: 99.928
|
1845 |
-
- type: recall_at_3
|
1846 |
-
value: 86.602
|
1847 |
-
- type: recall_at_5
|
1848 |
-
value: 91.133
|
1849 |
-
- task:
|
1850 |
-
type: Clustering
|
1851 |
-
dataset:
|
1852 |
-
type: mteb/reddit-clustering
|
1853 |
-
name: MTEB RedditClustering
|
1854 |
-
config: default
|
1855 |
-
split: test
|
1856 |
-
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1857 |
-
metrics:
|
1858 |
-
- type: v_measure
|
1859 |
-
value: 56.322692497613104
|
1860 |
-
- task:
|
1861 |
-
type: Clustering
|
1862 |
-
dataset:
|
1863 |
-
type: mteb/reddit-clustering-p2p
|
1864 |
-
name: MTEB RedditClusteringP2P
|
1865 |
-
config: default
|
1866 |
-
split: test
|
1867 |
-
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1868 |
-
metrics:
|
1869 |
-
- type: v_measure
|
1870 |
-
value: 61.895813503775074
|
1871 |
-
- task:
|
1872 |
-
type: Retrieval
|
1873 |
-
dataset:
|
1874 |
-
type: scidocs
|
1875 |
-
name: MTEB SCIDOCS
|
1876 |
-
config: default
|
1877 |
-
split: test
|
1878 |
-
revision: None
|
1879 |
-
metrics:
|
1880 |
-
- type: map_at_1
|
1881 |
-
value: 4.338
|
1882 |
-
- type: map_at_10
|
1883 |
-
value: 10.767
|
1884 |
-
- type: map_at_100
|
1885 |
-
value: 12.537999999999998
|
1886 |
-
- type: map_at_1000
|
1887 |
-
value: 12.803999999999998
|
1888 |
-
- type: map_at_3
|
1889 |
-
value: 7.788
|
1890 |
-
- type: map_at_5
|
1891 |
-
value: 9.302000000000001
|
1892 |
-
- type: mrr_at_1
|
1893 |
-
value: 21.4
|
1894 |
-
- type: mrr_at_10
|
1895 |
-
value: 31.637999999999998
|
1896 |
-
- type: mrr_at_100
|
1897 |
-
value: 32.688
|
1898 |
-
- type: mrr_at_1000
|
1899 |
-
value: 32.756
|
1900 |
-
- type: mrr_at_3
|
1901 |
-
value: 28.433000000000003
|
1902 |
-
- type: mrr_at_5
|
1903 |
-
value: 30.178
|
1904 |
-
- type: ndcg_at_1
|
1905 |
-
value: 21.4
|
1906 |
-
- type: ndcg_at_10
|
1907 |
-
value: 18.293
|
1908 |
-
- type: ndcg_at_100
|
1909 |
-
value: 25.274
|
1910 |
-
- type: ndcg_at_1000
|
1911 |
-
value: 30.284
|
1912 |
-
- type: ndcg_at_3
|
1913 |
-
value: 17.391000000000002
|
1914 |
-
- type: ndcg_at_5
|
1915 |
-
value: 15.146999999999998
|
1916 |
-
- type: precision_at_1
|
1917 |
-
value: 21.4
|
1918 |
-
- type: precision_at_10
|
1919 |
-
value: 9.48
|
1920 |
-
- type: precision_at_100
|
1921 |
-
value: 1.949
|
1922 |
-
- type: precision_at_1000
|
1923 |
-
value: 0.316
|
1924 |
-
- type: precision_at_3
|
1925 |
-
value: 16.167
|
1926 |
-
- type: precision_at_5
|
1927 |
-
value: 13.22
|
1928 |
-
- type: recall_at_1
|
1929 |
-
value: 4.338
|
1930 |
-
- type: recall_at_10
|
1931 |
-
value: 19.213
|
1932 |
-
- type: recall_at_100
|
1933 |
-
value: 39.562999999999995
|
1934 |
-
- type: recall_at_1000
|
1935 |
-
value: 64.08
|
1936 |
-
- type: recall_at_3
|
1937 |
-
value: 9.828000000000001
|
1938 |
-
- type: recall_at_5
|
1939 |
-
value: 13.383000000000001
|
1940 |
-
- task:
|
1941 |
-
type: STS
|
1942 |
-
dataset:
|
1943 |
-
type: mteb/sickr-sts
|
1944 |
-
name: MTEB SICK-R
|
1945 |
-
config: default
|
1946 |
-
split: test
|
1947 |
-
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1948 |
-
metrics:
|
1949 |
-
- type: cos_sim_pearson
|
1950 |
-
value: 82.42568163642142
|
1951 |
-
- type: cos_sim_spearman
|
1952 |
-
value: 78.5797159641342
|
1953 |
-
- type: euclidean_pearson
|
1954 |
-
value: 80.22151260811604
|
1955 |
-
- type: euclidean_spearman
|
1956 |
-
value: 78.5797151953878
|
1957 |
-
- type: manhattan_pearson
|
1958 |
-
value: 80.21224215864788
|
1959 |
-
- type: manhattan_spearman
|
1960 |
-
value: 78.55641478381344
|
1961 |
-
- task:
|
1962 |
-
type: STS
|
1963 |
-
dataset:
|
1964 |
-
type: mteb/sts12-sts
|
1965 |
-
name: MTEB STS12
|
1966 |
-
config: default
|
1967 |
-
split: test
|
1968 |
-
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1969 |
-
metrics:
|
1970 |
-
- type: cos_sim_pearson
|
1971 |
-
value: 85.44020710812569
|
1972 |
-
- type: cos_sim_spearman
|
1973 |
-
value: 78.91631735081286
|
1974 |
-
- type: euclidean_pearson
|
1975 |
-
value: 81.64188964182102
|
1976 |
-
- type: euclidean_spearman
|
1977 |
-
value: 78.91633286881678
|
1978 |
-
- type: manhattan_pearson
|
1979 |
-
value: 81.69294748512496
|
1980 |
-
- type: manhattan_spearman
|
1981 |
-
value: 78.93438558002656
|
1982 |
-
- task:
|
1983 |
-
type: STS
|
1984 |
-
dataset:
|
1985 |
-
type: mteb/sts13-sts
|
1986 |
-
name: MTEB STS13
|
1987 |
-
config: default
|
1988 |
-
split: test
|
1989 |
-
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1990 |
-
metrics:
|
1991 |
-
- type: cos_sim_pearson
|
1992 |
-
value: 84.27165426412311
|
1993 |
-
- type: cos_sim_spearman
|
1994 |
-
value: 85.40429140249618
|
1995 |
-
- type: euclidean_pearson
|
1996 |
-
value: 84.7509580724893
|
1997 |
-
- type: euclidean_spearman
|
1998 |
-
value: 85.40429140249618
|
1999 |
-
- type: manhattan_pearson
|
2000 |
-
value: 84.76488289321308
|
2001 |
-
- type: manhattan_spearman
|
2002 |
-
value: 85.4256793698708
|
2003 |
-
- task:
|
2004 |
-
type: STS
|
2005 |
-
dataset:
|
2006 |
-
type: mteb/sts14-sts
|
2007 |
-
name: MTEB STS14
|
2008 |
-
config: default
|
2009 |
-
split: test
|
2010 |
-
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2011 |
-
metrics:
|
2012 |
-
- type: cos_sim_pearson
|
2013 |
-
value: 83.138851760732
|
2014 |
-
- type: cos_sim_spearman
|
2015 |
-
value: 81.64101363896586
|
2016 |
-
- type: euclidean_pearson
|
2017 |
-
value: 82.55165038934942
|
2018 |
-
- type: euclidean_spearman
|
2019 |
-
value: 81.64105257080502
|
2020 |
-
- type: manhattan_pearson
|
2021 |
-
value: 82.52802949883335
|
2022 |
-
- type: manhattan_spearman
|
2023 |
-
value: 81.61255430718158
|
2024 |
-
- task:
|
2025 |
-
type: STS
|
2026 |
-
dataset:
|
2027 |
-
type: mteb/sts15-sts
|
2028 |
-
name: MTEB STS15
|
2029 |
-
config: default
|
2030 |
-
split: test
|
2031 |
-
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2032 |
-
metrics:
|
2033 |
-
- type: cos_sim_pearson
|
2034 |
-
value: 86.0654695484029
|
2035 |
-
- type: cos_sim_spearman
|
2036 |
-
value: 87.20408521902229
|
2037 |
-
- type: euclidean_pearson
|
2038 |
-
value: 86.8110651362115
|
2039 |
-
- type: euclidean_spearman
|
2040 |
-
value: 87.20408521902229
|
2041 |
-
- type: manhattan_pearson
|
2042 |
-
value: 86.77984656478691
|
2043 |
-
- type: manhattan_spearman
|
2044 |
-
value: 87.1719947099227
|
2045 |
-
- task:
|
2046 |
-
type: STS
|
2047 |
-
dataset:
|
2048 |
-
type: mteb/sts16-sts
|
2049 |
-
name: MTEB STS16
|
2050 |
-
config: default
|
2051 |
-
split: test
|
2052 |
-
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2053 |
-
metrics:
|
2054 |
-
- type: cos_sim_pearson
|
2055 |
-
value: 83.77823915496512
|
2056 |
-
- type: cos_sim_spearman
|
2057 |
-
value: 85.43566325729779
|
2058 |
-
- type: euclidean_pearson
|
2059 |
-
value: 84.5396956658821
|
2060 |
-
- type: euclidean_spearman
|
2061 |
-
value: 85.43566325729779
|
2062 |
-
- type: manhattan_pearson
|
2063 |
-
value: 84.5665398848169
|
2064 |
-
- type: manhattan_spearman
|
2065 |
-
value: 85.44375870303232
|
2066 |
-
- task:
|
2067 |
-
type: STS
|
2068 |
-
dataset:
|
2069 |
-
type: mteb/sts17-crosslingual-sts
|
2070 |
-
name: MTEB STS17 (en-en)
|
2071 |
-
config: en-en
|
2072 |
-
split: test
|
2073 |
-
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2074 |
-
metrics:
|
2075 |
-
- type: cos_sim_pearson
|
2076 |
-
value: 87.20030208471798
|
2077 |
-
- type: cos_sim_spearman
|
2078 |
-
value: 87.20485505076539
|
2079 |
-
- type: euclidean_pearson
|
2080 |
-
value: 88.10588324368722
|
2081 |
-
- type: euclidean_spearman
|
2082 |
-
value: 87.20485505076539
|
2083 |
-
- type: manhattan_pearson
|
2084 |
-
value: 87.92324770415183
|
2085 |
-
- type: manhattan_spearman
|
2086 |
-
value: 87.0571314561877
|
2087 |
-
- task:
|
2088 |
-
type: STS
|
2089 |
-
dataset:
|
2090 |
-
type: mteb/sts22-crosslingual-sts
|
2091 |
-
name: MTEB STS22 (en)
|
2092 |
-
config: en
|
2093 |
-
split: test
|
2094 |
-
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2095 |
-
metrics:
|
2096 |
-
- type: cos_sim_pearson
|
2097 |
-
value: 63.06093161604453
|
2098 |
-
- type: cos_sim_spearman
|
2099 |
-
value: 64.2163140357722
|
2100 |
-
- type: euclidean_pearson
|
2101 |
-
value: 65.27589680994006
|
2102 |
-
- type: euclidean_spearman
|
2103 |
-
value: 64.2163140357722
|
2104 |
-
- type: manhattan_pearson
|
2105 |
-
value: 65.45904383711101
|
2106 |
-
- type: manhattan_spearman
|
2107 |
-
value: 64.55404716679305
|
2108 |
-
- task:
|
2109 |
-
type: STS
|
2110 |
-
dataset:
|
2111 |
-
type: mteb/stsbenchmark-sts
|
2112 |
-
name: MTEB STSBenchmark
|
2113 |
-
config: default
|
2114 |
-
split: test
|
2115 |
-
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2116 |
-
metrics:
|
2117 |
-
- type: cos_sim_pearson
|
2118 |
-
value: 84.32976164578706
|
2119 |
-
- type: cos_sim_spearman
|
2120 |
-
value: 85.54302197678368
|
2121 |
-
- type: euclidean_pearson
|
2122 |
-
value: 85.26307149193056
|
2123 |
-
- type: euclidean_spearman
|
2124 |
-
value: 85.54302197678368
|
2125 |
-
- type: manhattan_pearson
|
2126 |
-
value: 85.26647282029371
|
2127 |
-
- type: manhattan_spearman
|
2128 |
-
value: 85.5316135265568
|
2129 |
-
- task:
|
2130 |
-
type: Reranking
|
2131 |
-
dataset:
|
2132 |
-
type: mteb/scidocs-reranking
|
2133 |
-
name: MTEB SciDocsRR
|
2134 |
-
config: default
|
2135 |
-
split: test
|
2136 |
-
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2137 |
-
metrics:
|
2138 |
-
- type: map
|
2139 |
-
value: 81.44675968318754
|
2140 |
-
- type: mrr
|
2141 |
-
value: 94.92741826075158
|
2142 |
-
- task:
|
2143 |
-
type: Retrieval
|
2144 |
-
dataset:
|
2145 |
-
type: scifact
|
2146 |
-
name: MTEB SciFact
|
2147 |
-
config: default
|
2148 |
-
split: test
|
2149 |
-
revision: None
|
2150 |
-
metrics:
|
2151 |
-
- type: map_at_1
|
2152 |
-
value: 56.34400000000001
|
2153 |
-
- type: map_at_10
|
2154 |
-
value: 65.927
|
2155 |
-
- type: map_at_100
|
2156 |
-
value: 66.431
|
2157 |
-
- type: map_at_1000
|
2158 |
-
value: 66.461
|
2159 |
-
- type: map_at_3
|
2160 |
-
value: 63.529
|
2161 |
-
- type: map_at_5
|
2162 |
-
value: 64.818
|
2163 |
-
- type: mrr_at_1
|
2164 |
-
value: 59.333000000000006
|
2165 |
-
- type: mrr_at_10
|
2166 |
-
value: 67.54599999999999
|
2167 |
-
- type: mrr_at_100
|
2168 |
-
value: 67.892
|
2169 |
-
- type: mrr_at_1000
|
2170 |
-
value: 67.917
|
2171 |
-
- type: mrr_at_3
|
2172 |
-
value: 65.778
|
2173 |
-
- type: mrr_at_5
|
2174 |
-
value: 66.794
|
2175 |
-
- type: ndcg_at_1
|
2176 |
-
value: 59.333000000000006
|
2177 |
-
- type: ndcg_at_10
|
2178 |
-
value: 70.5
|
2179 |
-
- type: ndcg_at_100
|
2180 |
-
value: 72.688
|
2181 |
-
- type: ndcg_at_1000
|
2182 |
-
value: 73.483
|
2183 |
-
- type: ndcg_at_3
|
2184 |
-
value: 66.338
|
2185 |
-
- type: ndcg_at_5
|
2186 |
-
value: 68.265
|
2187 |
-
- type: precision_at_1
|
2188 |
-
value: 59.333000000000006
|
2189 |
-
- type: precision_at_10
|
2190 |
-
value: 9.3
|
2191 |
-
- type: precision_at_100
|
2192 |
-
value: 1.053
|
2193 |
-
- type: precision_at_1000
|
2194 |
-
value: 0.11199999999999999
|
2195 |
-
- type: precision_at_3
|
2196 |
-
value: 25.889
|
2197 |
-
- type: precision_at_5
|
2198 |
-
value: 16.866999999999997
|
2199 |
-
- type: recall_at_1
|
2200 |
-
value: 56.34400000000001
|
2201 |
-
- type: recall_at_10
|
2202 |
-
value: 82.789
|
2203 |
-
- type: recall_at_100
|
2204 |
-
value: 92.767
|
2205 |
-
- type: recall_at_1000
|
2206 |
-
value: 99
|
2207 |
-
- type: recall_at_3
|
2208 |
-
value: 71.64399999999999
|
2209 |
-
- type: recall_at_5
|
2210 |
-
value: 76.322
|
2211 |
-
- task:
|
2212 |
-
type: PairClassification
|
2213 |
-
dataset:
|
2214 |
-
type: mteb/sprintduplicatequestions-pairclassification
|
2215 |
-
name: MTEB SprintDuplicateQuestions
|
2216 |
-
config: default
|
2217 |
-
split: test
|
2218 |
-
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2219 |
-
metrics:
|
2220 |
-
- type: cos_sim_accuracy
|
2221 |
-
value: 99.75742574257426
|
2222 |
-
- type: cos_sim_ap
|
2223 |
-
value: 93.52081548447406
|
2224 |
-
- type: cos_sim_f1
|
2225 |
-
value: 87.33850129198966
|
2226 |
-
- type: cos_sim_precision
|
2227 |
-
value: 90.37433155080214
|
2228 |
-
- type: cos_sim_recall
|
2229 |
-
value: 84.5
|
2230 |
-
- type: dot_accuracy
|
2231 |
-
value: 99.75742574257426
|
2232 |
-
- type: dot_ap
|
2233 |
-
value: 93.52081548447406
|
2234 |
-
- type: dot_f1
|
2235 |
-
value: 87.33850129198966
|
2236 |
-
- type: dot_precision
|
2237 |
-
value: 90.37433155080214
|
2238 |
-
- type: dot_recall
|
2239 |
-
value: 84.5
|
2240 |
-
- type: euclidean_accuracy
|
2241 |
-
value: 99.75742574257426
|
2242 |
-
- type: euclidean_ap
|
2243 |
-
value: 93.52081548447406
|
2244 |
-
- type: euclidean_f1
|
2245 |
-
value: 87.33850129198966
|
2246 |
-
- type: euclidean_precision
|
2247 |
-
value: 90.37433155080214
|
2248 |
-
- type: euclidean_recall
|
2249 |
-
value: 84.5
|
2250 |
-
- type: manhattan_accuracy
|
2251 |
-
value: 99.75841584158415
|
2252 |
-
- type: manhattan_ap
|
2253 |
-
value: 93.4975678585854
|
2254 |
-
- type: manhattan_f1
|
2255 |
-
value: 87.26708074534162
|
2256 |
-
- type: manhattan_precision
|
2257 |
-
value: 90.45064377682404
|
2258 |
-
- type: manhattan_recall
|
2259 |
-
value: 84.3
|
2260 |
-
- type: max_accuracy
|
2261 |
-
value: 99.75841584158415
|
2262 |
-
- type: max_ap
|
2263 |
-
value: 93.52081548447406
|
2264 |
-
- type: max_f1
|
2265 |
-
value: 87.33850129198966
|
2266 |
-
- task:
|
2267 |
-
type: Clustering
|
2268 |
-
dataset:
|
2269 |
-
type: mteb/stackexchange-clustering
|
2270 |
-
name: MTEB StackExchangeClustering
|
2271 |
-
config: default
|
2272 |
-
split: test
|
2273 |
-
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2274 |
-
metrics:
|
2275 |
-
- type: v_measure
|
2276 |
-
value: 64.31437036686651
|
2277 |
-
- task:
|
2278 |
-
type: Clustering
|
2279 |
-
dataset:
|
2280 |
-
type: mteb/stackexchange-clustering-p2p
|
2281 |
-
name: MTEB StackExchangeClusteringP2P
|
2282 |
-
config: default
|
2283 |
-
split: test
|
2284 |
-
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2285 |
-
metrics:
|
2286 |
-
- type: v_measure
|
2287 |
-
value: 33.25569319007206
|
2288 |
-
- task:
|
2289 |
-
type: Reranking
|
2290 |
-
dataset:
|
2291 |
-
type: mteb/stackoverflowdupquestions-reranking
|
2292 |
-
name: MTEB StackOverflowDupQuestions
|
2293 |
-
config: default
|
2294 |
-
split: test
|
2295 |
-
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2296 |
-
metrics:
|
2297 |
-
- type: map
|
2298 |
-
value: 49.90474939720706
|
2299 |
-
- type: mrr
|
2300 |
-
value: 50.568115503777264
|
2301 |
-
- task:
|
2302 |
-
type: Summarization
|
2303 |
-
dataset:
|
2304 |
-
type: mteb/summeval
|
2305 |
-
name: MTEB SummEval
|
2306 |
-
config: default
|
2307 |
-
split: test
|
2308 |
-
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2309 |
-
metrics:
|
2310 |
-
- type: cos_sim_pearson
|
2311 |
-
value: 29.866828641244712
|
2312 |
-
- type: cos_sim_spearman
|
2313 |
-
value: 30.077555055873866
|
2314 |
-
- type: dot_pearson
|
2315 |
-
value: 29.866832988572266
|
2316 |
-
- type: dot_spearman
|
2317 |
-
value: 30.077555055873866
|
2318 |
-
- task:
|
2319 |
-
type: Retrieval
|
2320 |
-
dataset:
|
2321 |
-
type: trec-covid
|
2322 |
-
name: MTEB TRECCOVID
|
2323 |
-
config: default
|
2324 |
-
split: test
|
2325 |
-
revision: None
|
2326 |
-
metrics:
|
2327 |
-
- type: map_at_1
|
2328 |
-
value: 0.232
|
2329 |
-
- type: map_at_10
|
2330 |
-
value: 2.094
|
2331 |
-
- type: map_at_100
|
2332 |
-
value: 11.971
|
2333 |
-
- type: map_at_1000
|
2334 |
-
value: 28.158
|
2335 |
-
- type: map_at_3
|
2336 |
-
value: 0.688
|
2337 |
-
- type: map_at_5
|
2338 |
-
value: 1.114
|
2339 |
-
- type: mrr_at_1
|
2340 |
-
value: 88
|
2341 |
-
- type: mrr_at_10
|
2342 |
-
value: 93.4
|
2343 |
-
- type: mrr_at_100
|
2344 |
-
value: 93.4
|
2345 |
-
- type: mrr_at_1000
|
2346 |
-
value: 93.4
|
2347 |
-
- type: mrr_at_3
|
2348 |
-
value: 93
|
2349 |
-
- type: mrr_at_5
|
2350 |
-
value: 93.4
|
2351 |
-
- type: ndcg_at_1
|
2352 |
-
value: 84
|
2353 |
-
- type: ndcg_at_10
|
2354 |
-
value: 79.923
|
2355 |
-
- type: ndcg_at_100
|
2356 |
-
value: 61.17
|
2357 |
-
- type: ndcg_at_1000
|
2358 |
-
value: 53.03
|
2359 |
-
- type: ndcg_at_3
|
2360 |
-
value: 84.592
|
2361 |
-
- type: ndcg_at_5
|
2362 |
-
value: 82.821
|
2363 |
-
- type: precision_at_1
|
2364 |
-
value: 88
|
2365 |
-
- type: precision_at_10
|
2366 |
-
value: 85
|
2367 |
-
- type: precision_at_100
|
2368 |
-
value: 63.019999999999996
|
2369 |
-
- type: precision_at_1000
|
2370 |
-
value: 23.554
|
2371 |
-
- type: precision_at_3
|
2372 |
-
value: 89.333
|
2373 |
-
- type: precision_at_5
|
2374 |
-
value: 87.2
|
2375 |
-
- type: recall_at_1
|
2376 |
-
value: 0.232
|
2377 |
-
- type: recall_at_10
|
2378 |
-
value: 2.255
|
2379 |
-
- type: recall_at_100
|
2380 |
-
value: 14.823
|
2381 |
-
- type: recall_at_1000
|
2382 |
-
value: 49.456
|
2383 |
-
- type: recall_at_3
|
2384 |
-
value: 0.718
|
2385 |
-
- type: recall_at_5
|
2386 |
-
value: 1.175
|
2387 |
-
- task:
|
2388 |
-
type: Retrieval
|
2389 |
-
dataset:
|
2390 |
-
type: webis-touche2020
|
2391 |
-
name: MTEB Touche2020
|
2392 |
-
config: default
|
2393 |
-
split: test
|
2394 |
-
revision: None
|
2395 |
-
metrics:
|
2396 |
-
- type: map_at_1
|
2397 |
-
value: 2.547
|
2398 |
-
- type: map_at_10
|
2399 |
-
value: 11.375
|
2400 |
-
- type: map_at_100
|
2401 |
-
value: 18.194
|
2402 |
-
- type: map_at_1000
|
2403 |
-
value: 19.749
|
2404 |
-
- type: map_at_3
|
2405 |
-
value: 5.825
|
2406 |
-
- type: map_at_5
|
2407 |
-
value: 8.581
|
2408 |
-
- type: mrr_at_1
|
2409 |
-
value: 32.653
|
2410 |
-
- type: mrr_at_10
|
2411 |
-
value: 51.32
|
2412 |
-
- type: mrr_at_100
|
2413 |
-
value: 51.747
|
2414 |
-
- type: mrr_at_1000
|
2415 |
-
value: 51.747
|
2416 |
-
- type: mrr_at_3
|
2417 |
-
value: 47.278999999999996
|
2418 |
-
- type: mrr_at_5
|
2419 |
-
value: 48.605
|
2420 |
-
- type: ndcg_at_1
|
2421 |
-
value: 29.592000000000002
|
2422 |
-
- type: ndcg_at_10
|
2423 |
-
value: 28.151
|
2424 |
-
- type: ndcg_at_100
|
2425 |
-
value: 39.438
|
2426 |
-
- type: ndcg_at_1000
|
2427 |
-
value: 50.769
|
2428 |
-
- type: ndcg_at_3
|
2429 |
-
value: 30.758999999999997
|
2430 |
-
- type: ndcg_at_5
|
2431 |
-
value: 30.366
|
2432 |
-
- type: precision_at_1
|
2433 |
-
value: 32.653
|
2434 |
-
- type: precision_at_10
|
2435 |
-
value: 25.714
|
2436 |
-
- type: precision_at_100
|
2437 |
-
value: 8.041
|
2438 |
-
- type: precision_at_1000
|
2439 |
-
value: 1.555
|
2440 |
-
- type: precision_at_3
|
2441 |
-
value: 33.333
|
2442 |
-
- type: precision_at_5
|
2443 |
-
value: 31.837
|
2444 |
-
- type: recall_at_1
|
2445 |
-
value: 2.547
|
2446 |
-
- type: recall_at_10
|
2447 |
-
value: 18.19
|
2448 |
-
- type: recall_at_100
|
2449 |
-
value: 49.538
|
2450 |
-
- type: recall_at_1000
|
2451 |
-
value: 83.86
|
2452 |
-
- type: recall_at_3
|
2453 |
-
value: 7.329
|
2454 |
-
- type: recall_at_5
|
2455 |
-
value: 11.532
|
2456 |
-
- task:
|
2457 |
-
type: Classification
|
2458 |
-
dataset:
|
2459 |
-
type: mteb/toxic_conversations_50k
|
2460 |
-
name: MTEB ToxicConversationsClassification
|
2461 |
-
config: default
|
2462 |
-
split: test
|
2463 |
-
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2464 |
-
metrics:
|
2465 |
-
- type: accuracy
|
2466 |
-
value: 71.4952
|
2467 |
-
- type: ap
|
2468 |
-
value: 14.793362635531409
|
2469 |
-
- type: f1
|
2470 |
-
value: 55.204635551516915
|
2471 |
-
- task:
|
2472 |
-
type: Classification
|
2473 |
-
dataset:
|
2474 |
-
type: mteb/tweet_sentiment_extraction
|
2475 |
-
name: MTEB TweetSentimentExtractionClassification
|
2476 |
-
config: default
|
2477 |
-
split: test
|
2478 |
-
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2479 |
-
metrics:
|
2480 |
-
- type: accuracy
|
2481 |
-
value: 61.5365025466893
|
2482 |
-
- type: f1
|
2483 |
-
value: 61.81742556334845
|
2484 |
-
- task:
|
2485 |
-
type: Clustering
|
2486 |
-
dataset:
|
2487 |
-
type: mteb/twentynewsgroups-clustering
|
2488 |
-
name: MTEB TwentyNewsgroupsClustering
|
2489 |
-
config: default
|
2490 |
-
split: test
|
2491 |
-
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2492 |
-
metrics:
|
2493 |
-
- type: v_measure
|
2494 |
-
value: 49.05531070301185
|
2495 |
-
- task:
|
2496 |
-
type: PairClassification
|
2497 |
-
dataset:
|
2498 |
-
type: mteb/twittersemeval2015-pairclassification
|
2499 |
-
name: MTEB TwitterSemEval2015
|
2500 |
-
config: default
|
2501 |
-
split: test
|
2502 |
-
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2503 |
-
metrics:
|
2504 |
-
- type: cos_sim_accuracy
|
2505 |
-
value: 86.51725576682364
|
2506 |
-
- type: cos_sim_ap
|
2507 |
-
value: 75.2292304265163
|
2508 |
-
- type: cos_sim_f1
|
2509 |
-
value: 69.54022988505749
|
2510 |
-
- type: cos_sim_precision
|
2511 |
-
value: 63.65629110039457
|
2512 |
-
- type: cos_sim_recall
|
2513 |
-
value: 76.62269129287598
|
2514 |
-
- type: dot_accuracy
|
2515 |
-
value: 86.51725576682364
|
2516 |
-
- type: dot_ap
|
2517 |
-
value: 75.22922386081054
|
2518 |
-
- type: dot_f1
|
2519 |
-
value: 69.54022988505749
|
2520 |
-
- type: dot_precision
|
2521 |
-
value: 63.65629110039457
|
2522 |
-
- type: dot_recall
|
2523 |
-
value: 76.62269129287598
|
2524 |
-
- type: euclidean_accuracy
|
2525 |
-
value: 86.51725576682364
|
2526 |
-
- type: euclidean_ap
|
2527 |
-
value: 75.22925730473472
|
2528 |
-
- type: euclidean_f1
|
2529 |
-
value: 69.54022988505749
|
2530 |
-
- type: euclidean_precision
|
2531 |
-
value: 63.65629110039457
|
2532 |
-
- type: euclidean_recall
|
2533 |
-
value: 76.62269129287598
|
2534 |
-
- type: manhattan_accuracy
|
2535 |
-
value: 86.52321630804077
|
2536 |
-
- type: manhattan_ap
|
2537 |
-
value: 75.20608115037336
|
2538 |
-
- type: manhattan_f1
|
2539 |
-
value: 69.60000000000001
|
2540 |
-
- type: manhattan_precision
|
2541 |
-
value: 64.37219730941705
|
2542 |
-
- type: manhattan_recall
|
2543 |
-
value: 75.75197889182058
|
2544 |
-
- type: max_accuracy
|
2545 |
-
value: 86.52321630804077
|
2546 |
-
- type: max_ap
|
2547 |
-
value: 75.22925730473472
|
2548 |
-
- type: max_f1
|
2549 |
-
value: 69.60000000000001
|
2550 |
-
- task:
|
2551 |
-
type: PairClassification
|
2552 |
-
dataset:
|
2553 |
-
type: mteb/twitterurlcorpus-pairclassification
|
2554 |
-
name: MTEB TwitterURLCorpus
|
2555 |
-
config: default
|
2556 |
-
split: test
|
2557 |
-
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2558 |
-
metrics:
|
2559 |
-
- type: cos_sim_accuracy
|
2560 |
-
value: 89.34877944657896
|
2561 |
-
- type: cos_sim_ap
|
2562 |
-
value: 86.71257569277373
|
2563 |
-
- type: cos_sim_f1
|
2564 |
-
value: 79.10386355986088
|
2565 |
-
- type: cos_sim_precision
|
2566 |
-
value: 76.91468470434214
|
2567 |
-
- type: cos_sim_recall
|
2568 |
-
value: 81.4213119802895
|
2569 |
-
- type: dot_accuracy
|
2570 |
-
value: 89.34877944657896
|
2571 |
-
- type: dot_ap
|
2572 |
-
value: 86.71257133133368
|
2573 |
-
- type: dot_f1
|
2574 |
-
value: 79.10386355986088
|
2575 |
-
- type: dot_precision
|
2576 |
-
value: 76.91468470434214
|
2577 |
-
- type: dot_recall
|
2578 |
-
value: 81.4213119802895
|
2579 |
-
- type: euclidean_accuracy
|
2580 |
-
value: 89.34877944657896
|
2581 |
-
- type: euclidean_ap
|
2582 |
-
value: 86.71257651501476
|
2583 |
-
- type: euclidean_f1
|
2584 |
-
value: 79.10386355986088
|
2585 |
-
- type: euclidean_precision
|
2586 |
-
value: 76.91468470434214
|
2587 |
-
- type: euclidean_recall
|
2588 |
-
value: 81.4213119802895
|
2589 |
-
- type: manhattan_accuracy
|
2590 |
-
value: 89.35848177901967
|
2591 |
-
- type: manhattan_ap
|
2592 |
-
value: 86.69330615469126
|
2593 |
-
- type: manhattan_f1
|
2594 |
-
value: 79.13867741453949
|
2595 |
-
- type: manhattan_precision
|
2596 |
-
value: 76.78881807647741
|
2597 |
-
- type: manhattan_recall
|
2598 |
-
value: 81.63689559593472
|
2599 |
-
- type: max_accuracy
|
2600 |
-
value: 89.35848177901967
|
2601 |
-
- type: max_ap
|
2602 |
-
value: 86.71257651501476
|
2603 |
-
- type: max_f1
|
2604 |
-
value: 79.13867741453949
|
2605 |
-
license: apache-2.0
|
2606 |
-
language:
|
2607 |
-
- en
|
2608 |
-
---
|
2609 |
-
|
2610 |
-
|
2611 |
-
# nomic-embed-text-v1: A Reproducible Long Context (8192) Text Embedder
|
2612 |
-
|
2613 |
-
`nomic-embed-text-v1` is 8192 context length text encoder that surpasses OpenAI text-embedding-ada-002 and text-embedding-3-small performance on short and long context tasks.
|
2614 |
-
|
2615 |
-
|
2616 |
-
|
2617 |
-
| Name | SeqLen | MTEB | LoCo | Jina Long Context | Open Weights | Open Training Code | Open Data |
|
2618 |
-
| :-------------------------------:| :----- | :-------- | :------: | :---------------: | :-----------: | :----------------: | :---------- |
|
2619 |
-
| nomic-embed-text-v1 | 8192 | **62.39** |**85.53** | 54.16 | ✅ | ✅ | ✅ |
|
2620 |
-
| jina-embeddings-v2-base-en | 8192 | 60.39 | 85.45 | 51.90 | ✅ | ❌ | ❌ |
|
2621 |
-
| text-embedding-3-small | 8191 | 62.26 | 82.40 | **58.20** | ❌ | ❌ | ❌ |
|
2622 |
-
| text-embedding-ada-002 | 8191 | 60.99 | 52.7 | 55.25 | ❌ | ❌ | ❌ |
|
2623 |
-
|
2624 |
-
|
2625 |
-
## Hosted Inference API
|
2626 |
-
|
2627 |
-
The easiest way to get started with Nomic Embed is through the Nomic Embedding API.
|
2628 |
-
|
2629 |
-
Generating embeddings with the `nomic` Python client is as easy as
|
2630 |
-
|
2631 |
-
```python
|
2632 |
-
from nomic import embed
|
2633 |
-
|
2634 |
-
output = embed.text(
|
2635 |
-
texts=['Nomic Embedding API', '#keepAIOpen'],
|
2636 |
-
model='nomic-embed-text-v1',
|
2637 |
-
task_type='search_document'
|
2638 |
-
)
|
2639 |
-
|
2640 |
-
print(output)
|
2641 |
-
```
|
2642 |
-
|
2643 |
-
For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text)
|
2644 |
-
|
2645 |
-
## Data Visualization
|
2646 |
-
Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data!
|
2647 |
-
|
2648 |
-
|
2649 |
-
[](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample)
|
2650 |
-
|
2651 |
-
## Training Details
|
2652 |
-
|
2653 |
-
We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048),
|
2654 |
-
the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles.
|
2655 |
-
|
2656 |
-
In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage.
|
2657 |
-
|
2658 |
-
For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-text-v1).
|
2659 |
-
|
2660 |
-
Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors)
|
2661 |
-
|
2662 |
-
## Usage
|
2663 |
-
|
2664 |
-
Note `nomic-embed-text` requires prefixes! We support the prefixes `[search_query, search_document, classification, clustering]`.
|
2665 |
-
For retrieval applications, you should prepend `search_document` for all your documents and `search_query` for your queries.
|
2666 |
-
|
2667 |
-
### Sentence Transformers
|
2668 |
-
```python
|
2669 |
-
from sentence_transformers import SentenceTransformer
|
2670 |
-
|
2671 |
-
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
2672 |
-
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
|
2673 |
-
embeddings = model.encode(sentences)
|
2674 |
-
print(embeddings)
|
2675 |
-
```
|
2676 |
-
|
2677 |
-
### Transformers
|
2678 |
-
|
2679 |
-
```python
|
2680 |
-
import torch
|
2681 |
-
import torch.nn.functional as F
|
2682 |
-
from transformers import AutoTokenizer, AutoModel
|
2683 |
-
|
2684 |
-
def mean_pooling(model_output, attention_mask):
|
2685 |
-
token_embeddings = model_output[0]
|
2686 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
2687 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
2688 |
-
|
2689 |
-
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
|
2690 |
-
|
2691 |
-
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
2692 |
-
model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
|
2693 |
-
model.eval()
|
2694 |
-
|
2695 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
2696 |
-
|
2697 |
-
with torch.no_grad():
|
2698 |
-
model_output = model(**encoded_input)
|
2699 |
-
|
2700 |
-
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
2701 |
-
embeddings = F.normalize(embeddings, p=2, dim=1)
|
2702 |
-
print(embeddings)
|
2703 |
-
```
|
2704 |
-
|
2705 |
-
The model natively supports scaling of the sequence length past 2048 tokens. To do so,
|
2706 |
-
|
2707 |
-
```diff
|
2708 |
-
- tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
2709 |
-
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192)
|
2710 |
-
|
2711 |
-
|
2712 |
-
- model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
|
2713 |
-
+ model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2)
|
2714 |
-
```
|
2715 |
-
|
2716 |
-
### Transformers.js
|
2717 |
-
|
2718 |
-
```js
|
2719 |
-
import { pipeline } from '@xenova/transformers';
|
2720 |
-
|
2721 |
-
// Create a feature extraction pipeline
|
2722 |
-
const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1', {
|
2723 |
-
quantized: false, // Comment out this line to use the quantized version
|
2724 |
-
});
|
2725 |
-
|
2726 |
-
// Compute sentence embeddings
|
2727 |
-
const texts = ['What is TSNE?', 'Who is Laurens van der Maaten?'];
|
2728 |
-
const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });
|
2729 |
-
console.log(embeddings);
|
2730 |
-
```
|
2731 |
-
|
2732 |
-
# Join the Nomic Community
|
2733 |
-
|
2734 |
-
- Nomic: [https://nomic.ai](https://nomic.ai)
|
2735 |
-
- Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8)
|
2736 |
-
- Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/config.json
DELETED
@@ -1,56 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"activation_function": "swiglu",
|
3 |
-
"architectures": [
|
4 |
-
"NomicBertModel"
|
5 |
-
],
|
6 |
-
"attn_pdrop": 0.0,
|
7 |
-
"auto_map": {
|
8 |
-
"AutoConfig": "configuration_hf_nomic_bert.NomicBertConfig",
|
9 |
-
"AutoModel": "modeling_hf_nomic_bert.NomicBertModel",
|
10 |
-
"AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining"
|
11 |
-
},
|
12 |
-
"bos_token_id": null,
|
13 |
-
"causal": false,
|
14 |
-
"dense_seq_output": true,
|
15 |
-
"embd_pdrop": 0.0,
|
16 |
-
"eos_token_id": null,
|
17 |
-
"fused_bias_fc": true,
|
18 |
-
"fused_dropout_add_ln": true,
|
19 |
-
"initializer_range": 0.02,
|
20 |
-
"layer_norm_epsilon": 1e-12,
|
21 |
-
"mlp_fc1_bias": false,
|
22 |
-
"mlp_fc2_bias": false,
|
23 |
-
"model_type": "nomic_bert",
|
24 |
-
"n_embd": 768,
|
25 |
-
"n_head": 12,
|
26 |
-
"n_inner": 3072,
|
27 |
-
"n_layer": 12,
|
28 |
-
"n_positions": 8192,
|
29 |
-
"pad_vocab_size_multiple": 64,
|
30 |
-
"parallel_block": false,
|
31 |
-
"parallel_block_tied_norm": false,
|
32 |
-
"prenorm": false,
|
33 |
-
"qkv_proj_bias": false,
|
34 |
-
"reorder_and_upcast_attn": false,
|
35 |
-
"resid_pdrop": 0.0,
|
36 |
-
"rotary_emb_base": 1000,
|
37 |
-
"rotary_emb_fraction": 1.0,
|
38 |
-
"rotary_emb_interleaved": false,
|
39 |
-
"rotary_emb_scale_base": null,
|
40 |
-
"rotary_scaling_factor": 2,
|
41 |
-
"scale_attn_by_inverse_layer_idx": false,
|
42 |
-
"scale_attn_weights": true,
|
43 |
-
"summary_activation": null,
|
44 |
-
"summary_first_dropout": 0.0,
|
45 |
-
"summary_proj_to_labels": true,
|
46 |
-
"summary_type": "cls_index",
|
47 |
-
"summary_use_proj": true,
|
48 |
-
"torch_dtype": "float32",
|
49 |
-
"transformers_version": "4.34.0",
|
50 |
-
"type_vocab_size": 2,
|
51 |
-
"use_cache": true,
|
52 |
-
"use_flash_attn": true,
|
53 |
-
"use_rms_norm": false,
|
54 |
-
"use_xentropy": true,
|
55 |
-
"vocab_size": 30528
|
56 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/config_sentence_transformers.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"__version__": {
|
3 |
-
"sentence_transformers": "2.4.0.dev0",
|
4 |
-
"transformers": "4.37.2",
|
5 |
-
"pytorch": "2.1.0+cu121"
|
6 |
-
}
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/configuration_hf_nomic_bert.py
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
from transformers import GPT2Config
|
2 |
-
|
3 |
-
|
4 |
-
class NomicBertConfig(GPT2Config):
|
5 |
-
model_type = "nomic_bert"
|
6 |
-
|
7 |
-
def __init__(self,
|
8 |
-
prenorm=False,
|
9 |
-
parallel_block=False,
|
10 |
-
parallel_block_tied_norm=False,
|
11 |
-
rotary_emb_fraction=0.0,
|
12 |
-
fused_dropout_add_ln=False,
|
13 |
-
fused_bias_fc=False,
|
14 |
-
use_flash_attn=False,
|
15 |
-
use_xentropy=False,
|
16 |
-
qkv_proj_bias=True,
|
17 |
-
rotary_emb_base=1000,
|
18 |
-
rotary_emb_scale_base=None,
|
19 |
-
rotary_emb_interleaved=False,
|
20 |
-
mlp_fc1_bias=True,
|
21 |
-
mlp_fc2_bias=True,
|
22 |
-
use_rms_norm=False,
|
23 |
-
causal=False,
|
24 |
-
type_vocab_size=2,
|
25 |
-
dense_seq_output=True,
|
26 |
-
pad_vocab_size_multiple=1,
|
27 |
-
tie_word_embeddings=True,
|
28 |
-
rotary_scaling_factor=1.0,
|
29 |
-
**kwargs,
|
30 |
-
):
|
31 |
-
self.prenorm = prenorm
|
32 |
-
self.parallel_block = parallel_block
|
33 |
-
self.parallel_block_tied_norm = parallel_block_tied_norm
|
34 |
-
self.rotary_emb_fraction = rotary_emb_fraction
|
35 |
-
self.tie_word_embeddings = tie_word_embeddings
|
36 |
-
self.fused_dropout_add_ln = fused_dropout_add_ln
|
37 |
-
self.fused_bias_fc = fused_bias_fc
|
38 |
-
self.use_flash_attn = use_flash_attn
|
39 |
-
self.use_xentropy = use_xentropy
|
40 |
-
self.qkv_proj_bias = qkv_proj_bias
|
41 |
-
self.rotary_emb_base = rotary_emb_base
|
42 |
-
self.rotary_emb_scale_base = rotary_emb_scale_base
|
43 |
-
self.rotary_emb_interleaved = rotary_emb_interleaved
|
44 |
-
self.mlp_fc1_bias = mlp_fc1_bias
|
45 |
-
self.mlp_fc2_bias = mlp_fc2_bias
|
46 |
-
self.use_rms_norm = use_rms_norm
|
47 |
-
self.causal = causal
|
48 |
-
self.type_vocab_size = type_vocab_size
|
49 |
-
self.dense_seq_output = dense_seq_output
|
50 |
-
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
51 |
-
self.rotary_scaling_factor = rotary_scaling_factor
|
52 |
-
|
53 |
-
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:47e396424a085a613034450cd4bf9e8acfb568b19089ae1c5c4e7051ae286877
|
3 |
-
size 546938168
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/modeling_hf_nomic_bert.py
DELETED
@@ -1,1238 +0,0 @@
|
|
1 |
-
# Copyright (c) 2022, Tri Dao.
|
2 |
-
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
3 |
-
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
4 |
-
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
5 |
-
|
6 |
-
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
7 |
-
import os
|
8 |
-
import logging
|
9 |
-
from functools import partial
|
10 |
-
from typing import Optional, List, Tuple, Union
|
11 |
-
|
12 |
-
import torch
|
13 |
-
import torch.nn as nn
|
14 |
-
import torch.nn.functional as F
|
15 |
-
from einops import rearrange, repeat
|
16 |
-
from transformers import GPT2Config, PreTrainedModel
|
17 |
-
from transformers.models.bert.modeling_bert import (
|
18 |
-
BaseModelOutputWithPoolingAndCrossAttentions,
|
19 |
-
MaskedLMOutput,
|
20 |
-
SequenceClassifierOutput
|
21 |
-
)
|
22 |
-
|
23 |
-
import re
|
24 |
-
from collections import OrderedDict
|
25 |
-
from safetensors.torch import load_file as safe_load_file
|
26 |
-
from transformers.utils import (
|
27 |
-
SAFE_WEIGHTS_INDEX_NAME,
|
28 |
-
SAFE_WEIGHTS_NAME,
|
29 |
-
WEIGHTS_INDEX_NAME,
|
30 |
-
WEIGHTS_NAME,
|
31 |
-
)
|
32 |
-
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
|
33 |
-
|
34 |
-
|
35 |
-
from .configuration_hf_nomic_bert import NomicBertConfig
|
36 |
-
|
37 |
-
logger = logging.getLogger(__name__)
|
38 |
-
|
39 |
-
# adapted from flash attention, added safe serialization option for hf models
|
40 |
-
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
|
41 |
-
# If not fp32, then we don't want to load directly to the GPU
|
42 |
-
mapped_device = "cpu" if dtype not in [torch.float32, None] else device
|
43 |
-
is_sharded = False
|
44 |
-
load_safe = False
|
45 |
-
resolved_archive_file = None
|
46 |
-
|
47 |
-
weights_path = os.path.join(model_name, WEIGHTS_NAME)
|
48 |
-
weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
|
49 |
-
safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
|
50 |
-
safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)
|
51 |
-
|
52 |
-
if os.path.isfile(weights_path):
|
53 |
-
resolved_archive_file = cached_file(
|
54 |
-
model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False
|
55 |
-
)
|
56 |
-
elif os.path.isfile(weights_index_path):
|
57 |
-
resolved_archive_file = cached_file(
|
58 |
-
model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
|
59 |
-
)
|
60 |
-
is_sharded = True
|
61 |
-
elif os.path.isfile(safe_weights_path):
|
62 |
-
resolved_archive_file = cached_file(
|
63 |
-
model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False
|
64 |
-
)
|
65 |
-
load_safe = True
|
66 |
-
elif os.path.isfile(safe_weights_index_path):
|
67 |
-
resolved_archive_file = cached_file(
|
68 |
-
model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
|
69 |
-
)
|
70 |
-
is_sharded = True
|
71 |
-
load_safe = True
|
72 |
-
else: # Try loading from HF hub instead of from local files
|
73 |
-
weight_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
|
74 |
-
resolved_archive_file = cached_file(model_name, weight_name, _raise_exceptions_for_missing_entries=False)
|
75 |
-
if resolved_archive_file is None:
|
76 |
-
weight_index = WEIGHTS_INDEX_NAME if not safe_serialization else SAFE_WEIGHTS_INDEX_NAME
|
77 |
-
resolved_archive_file = cached_file(model_name, weight_index,
|
78 |
-
_raise_exceptions_for_missing_entries=False)
|
79 |
-
if resolved_archive_file is not None:
|
80 |
-
is_sharded = True
|
81 |
-
|
82 |
-
load_safe = safe_serialization
|
83 |
-
|
84 |
-
if resolved_archive_file is None:
|
85 |
-
raise EnvironmentError(f"Model name {model_name} was not found.")
|
86 |
-
|
87 |
-
if load_safe:
|
88 |
-
loader = partial(safe_load_file, device=mapped_device)
|
89 |
-
else:
|
90 |
-
loader = partial(torch.load, map_location=mapped_device)
|
91 |
-
|
92 |
-
if is_sharded:
|
93 |
-
# resolved_archive_file becomes a list of files that point to the different
|
94 |
-
# checkpoint shards in this case.
|
95 |
-
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
|
96 |
-
model_name, resolved_archive_file
|
97 |
-
)
|
98 |
-
state_dict = {}
|
99 |
-
for sharded_file in resolved_archive_file:
|
100 |
-
state_dict.update(loader(sharded_file))
|
101 |
-
else:
|
102 |
-
state_dict = loader(resolved_archive_file)
|
103 |
-
# Convert dtype before moving to GPU to save memory
|
104 |
-
if dtype is not None:
|
105 |
-
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
|
106 |
-
state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
|
107 |
-
return state_dict
|
108 |
-
|
109 |
-
|
110 |
-
def filter_shapes(state_dict, model):
|
111 |
-
"""
|
112 |
-
Filters the state dict to match the current model shape.
|
113 |
-
"""
|
114 |
-
filtered_state_dict = {}
|
115 |
-
for key, value in state_dict.items():
|
116 |
-
if key in model.state_dict():
|
117 |
-
if value.shape == model.state_dict()[key].shape:
|
118 |
-
filtered_state_dict[key] = value
|
119 |
-
return filtered_state_dict
|
120 |
-
|
121 |
-
|
122 |
-
def remap_bert_state_dict(state_dict, config, remove_bert=False, remove_cls_weights=False, add_pooling_layer=False):
|
123 |
-
"""
|
124 |
-
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
125 |
-
"""
|
126 |
-
def add_bert_prefix(key):
|
127 |
-
# prepend bert. to the key
|
128 |
-
if key.startswith("bert.") or key.startswith("cls."):
|
129 |
-
return key
|
130 |
-
return f"bert.{key}"
|
131 |
-
|
132 |
-
state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
|
133 |
-
|
134 |
-
# LayerNorm
|
135 |
-
def key_mapping_ln_gamma_beta(key):
|
136 |
-
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
137 |
-
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
138 |
-
return key
|
139 |
-
|
140 |
-
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
|
141 |
-
|
142 |
-
# Layers
|
143 |
-
def key_mapping_layers(key):
|
144 |
-
return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)
|
145 |
-
|
146 |
-
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
147 |
-
|
148 |
-
# LayerNorm
|
149 |
-
def key_mapping_ln(key):
|
150 |
-
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
|
151 |
-
key = re.sub(
|
152 |
-
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
153 |
-
r"bert.encoder.layers.\1.norm1.\2",
|
154 |
-
key,
|
155 |
-
)
|
156 |
-
key = re.sub(
|
157 |
-
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
158 |
-
r"bert.encoder.layers.\1.norm2.\2",
|
159 |
-
key,
|
160 |
-
)
|
161 |
-
key = re.sub(
|
162 |
-
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
163 |
-
r"cls.predictions.transform.layer_norm.\1",
|
164 |
-
key,
|
165 |
-
)
|
166 |
-
return key
|
167 |
-
|
168 |
-
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
169 |
-
|
170 |
-
# MLP
|
171 |
-
def key_mapping_mlp(key):
|
172 |
-
key = re.sub(
|
173 |
-
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
174 |
-
r"bert.encoder.layers.\1.mlp.fc1.\2",
|
175 |
-
key,
|
176 |
-
)
|
177 |
-
key = re.sub(
|
178 |
-
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
|
179 |
-
r"bert.encoder.layers.\1.mlp.fc2.\2",
|
180 |
-
key,
|
181 |
-
)
|
182 |
-
return key
|
183 |
-
|
184 |
-
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
185 |
-
|
186 |
-
# Attention
|
187 |
-
last_layer_subset = getattr(config, "last_layer_subset", False)
|
188 |
-
for d in range(config.num_hidden_layers):
|
189 |
-
if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
|
190 |
-
continue
|
191 |
-
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
|
192 |
-
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
|
193 |
-
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
|
194 |
-
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
|
195 |
-
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
|
196 |
-
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
|
197 |
-
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
198 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat(
|
199 |
-
[Wq, Wk, Wv], dim=0
|
200 |
-
)
|
201 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
|
202 |
-
else:
|
203 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
|
204 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
|
205 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
|
206 |
-
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)
|
207 |
-
|
208 |
-
def key_mapping_attn(key):
|
209 |
-
return re.sub(
|
210 |
-
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
211 |
-
r"bert.encoder.layers.\1.attn.out_proj.\2",
|
212 |
-
key,
|
213 |
-
)
|
214 |
-
|
215 |
-
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
216 |
-
|
217 |
-
def key_mapping_decoder_bias(key):
|
218 |
-
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
219 |
-
|
220 |
-
|
221 |
-
# remove nsp weights, we don't use
|
222 |
-
state_dict.pop("cls.seq_relationship.weight", None)
|
223 |
-
state_dict.pop("cls.seq_relationship.bias", None)
|
224 |
-
state_dict.pop("bert.embeddings.position_ids", None)
|
225 |
-
|
226 |
-
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
|
227 |
-
|
228 |
-
if remove_cls_weights:
|
229 |
-
cls_weights = ["cls.predictions.decoder.bias",
|
230 |
-
"cls.predictions.transform.dense.weight",
|
231 |
-
"cls.predictions.transform.dense.bias",
|
232 |
-
"cls.predictions.transform.layer_norm.weight",
|
233 |
-
"cls.predictions.transform.layer_norm.bias",
|
234 |
-
"cls.predictions.decoder.weight"]
|
235 |
-
for weight in cls_weights:
|
236 |
-
state_dict.pop(weight, None)
|
237 |
-
|
238 |
-
# Word embedding
|
239 |
-
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
240 |
-
if pad_vocab_size_multiple > 1:
|
241 |
-
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
242 |
-
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
|
243 |
-
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
244 |
-
)
|
245 |
-
if not remove_cls_weights:
|
246 |
-
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
247 |
-
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
248 |
-
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
249 |
-
)
|
250 |
-
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
251 |
-
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
252 |
-
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
253 |
-
if "cls.predictions.decoder.bias" in state_dict:
|
254 |
-
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
255 |
-
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
256 |
-
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
257 |
-
)
|
258 |
-
|
259 |
-
if add_pooling_layer is False:
|
260 |
-
pooler_weights = ["bert.pooler.dense.weight",
|
261 |
-
"bert.pooler.dense.bias",
|
262 |
-
]
|
263 |
-
for key in pooler_weights:
|
264 |
-
state_dict.pop(key, None)
|
265 |
-
|
266 |
-
if remove_bert:
|
267 |
-
def remove_bert_prefix(key):
|
268 |
-
key = re.sub(r"^bert.", "", key)
|
269 |
-
return key
|
270 |
-
|
271 |
-
state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())
|
272 |
-
|
273 |
-
|
274 |
-
return state_dict
|
275 |
-
|
276 |
-
|
277 |
-
class NomicBertPreTrainedModel(PreTrainedModel):
|
278 |
-
"""An abstract class to handle weights initialization and
|
279 |
-
a simple interface for dowloading and loading pretrained models.
|
280 |
-
"""
|
281 |
-
config_class = NomicBertConfig
|
282 |
-
base_model_prefix = "model"
|
283 |
-
supports_gradient_checkpointing = True
|
284 |
-
_no_split_modules = ["Block"]
|
285 |
-
_skip_keys_device_placement = "past_key_values"
|
286 |
-
|
287 |
-
def __init__(self, config, *inputs, **kwargs):
|
288 |
-
super().__init__(config)
|
289 |
-
if not isinstance(config, GPT2Config):
|
290 |
-
raise ValueError(
|
291 |
-
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
|
292 |
-
"To create a model from a Google pretrained model use "
|
293 |
-
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
294 |
-
self.__class__.__name__, self.__class__.__name__
|
295 |
-
)
|
296 |
-
)
|
297 |
-
self.config = config
|
298 |
-
|
299 |
-
@classmethod
|
300 |
-
def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
|
301 |
-
"""
|
302 |
-
Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
|
303 |
-
Download and cache the pre-trained model file if needed.
|
304 |
-
|
305 |
-
Params:
|
306 |
-
pretrained_model_name_or_path: either:
|
307 |
-
- a path or url to a pretrained model archive containing:
|
308 |
-
. `bert_config.json` a configuration file for the model
|
309 |
-
. `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
|
310 |
-
- a path or url to a pretrained model archive containing:
|
311 |
-
. `bert_config.json` a configuration file for the model
|
312 |
-
. `model.chkpt` a TensorFlow checkpoint
|
313 |
-
*inputs, **kwargs: additional input for the specific NomicBert class
|
314 |
-
(ex: num_labels for NomicBertForSequenceClassification)
|
315 |
-
"""
|
316 |
-
# Instantiate model.
|
317 |
-
if config is None:
|
318 |
-
config = cls.config_class.from_pretrained(model_name)
|
319 |
-
remove_cls = cls != NomicBertForPreTraining
|
320 |
-
remove_bert_prefix = cls != NomicBertForPreTraining
|
321 |
-
ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
|
322 |
-
num_labels = kwargs.pop("num_labels", None)
|
323 |
-
rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
|
324 |
-
if rotary_scaling_factor:
|
325 |
-
config.rotary_scaling_factor = rotary_scaling_factor
|
326 |
-
else:
|
327 |
-
config.rotary_scaling_factor = None
|
328 |
-
if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
|
329 |
-
config.n_positions = 2048
|
330 |
-
if num_labels:
|
331 |
-
config.num_labels = num_labels
|
332 |
-
|
333 |
-
if "add_pooling_layer" in kwargs:
|
334 |
-
model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
|
335 |
-
else:
|
336 |
-
if cls == NomicBertModel:
|
337 |
-
model = cls(config, *inputs, add_pooling_layer=False)
|
338 |
-
else:
|
339 |
-
model = cls(config, *inputs)
|
340 |
-
# TODO: fix this
|
341 |
-
# Assuming we know what we're doing when loading from disk
|
342 |
-
# Prob a bad assumption but i'm tired and want to train this asap
|
343 |
-
if os.path.exists(model_name):
|
344 |
-
state_dict = torch.load(f"{model_name}/pytorch_model.bin")
|
345 |
-
if ignore_mismatched_shapes:
|
346 |
-
state_dict = filter_shapes(state_dict, model)
|
347 |
-
load_return = model.load_state_dict(state_dict, strict=False)
|
348 |
-
else:
|
349 |
-
# TODO: can probably check config class and see if we need to remap from a bert model
|
350 |
-
state_dict = state_dict_from_pretrained(model_name)
|
351 |
-
state_dict = remap_bert_state_dict(state_dict,
|
352 |
-
config,
|
353 |
-
remove_bert=remove_bert_prefix,
|
354 |
-
remove_cls_weights=remove_cls,
|
355 |
-
add_pooling_layer=getattr(config, "add_pooling_layer", False)
|
356 |
-
)
|
357 |
-
if ignore_mismatched_shapes:
|
358 |
-
state_dict = filter_shapes(state_dict, model)
|
359 |
-
|
360 |
-
load_return = model.load_state_dict(
|
361 |
-
state_dict,
|
362 |
-
strict=True
|
363 |
-
)
|
364 |
-
logger.warning(load_return)
|
365 |
-
return model
|
366 |
-
|
367 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
368 |
-
if isinstance(module, NomicBertEncoder):
|
369 |
-
module.gradient_checkpointing = value
|
370 |
-
|
371 |
-
|
372 |
-
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
373 |
-
def _init_weights(module, initializer_range=0.02):
|
374 |
-
if isinstance(module, nn.Linear):
|
375 |
-
nn.init.normal_(module.weight, std=initializer_range)
|
376 |
-
if module.bias is not None:
|
377 |
-
nn.init.zeros_(module.bias)
|
378 |
-
elif isinstance(module, nn.Embedding):
|
379 |
-
nn.init.normal_(module.weight, std=initializer_range)
|
380 |
-
if module.padding_idx is not None:
|
381 |
-
nn.init.zeros_(module.weight[module.padding_idx])
|
382 |
-
|
383 |
-
|
384 |
-
class NomicBertEmbeddings(nn.Module):
|
385 |
-
def __init__(
|
386 |
-
self,
|
387 |
-
config
|
388 |
-
):
|
389 |
-
"""
|
390 |
-
If max_position_embeddings <= 0, there's no position embeddings
|
391 |
-
If type_vocab_size <= 0, there's no token type embeddings
|
392 |
-
"""
|
393 |
-
super().__init__()
|
394 |
-
self.word_embeddings = nn.Embedding(
|
395 |
-
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
396 |
-
)
|
397 |
-
self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
|
398 |
-
self.type_vocab_size = config.type_vocab_size
|
399 |
-
if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
|
400 |
-
self.position_embeddings = nn.Embedding(
|
401 |
-
config.max_position_embeddings, config.hidden_size,
|
402 |
-
)
|
403 |
-
if self.type_vocab_size > 0:
|
404 |
-
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
405 |
-
|
406 |
-
def forward(self, input_ids, position_ids=None, token_type_ids=None):
|
407 |
-
"""
|
408 |
-
input_ids: (batch, seqlen)
|
409 |
-
position_ids: (batch, seqlen)
|
410 |
-
token_type_ids: (batch, seqlen)
|
411 |
-
"""
|
412 |
-
batch_size, seqlen = input_ids.shape
|
413 |
-
embeddings = self.word_embeddings(input_ids)
|
414 |
-
|
415 |
-
if self.type_vocab_size > 0:
|
416 |
-
if token_type_ids is None:
|
417 |
-
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
418 |
-
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
419 |
-
embeddings = embeddings + token_type_embeddings
|
420 |
-
|
421 |
-
if self.max_position_embeddings > 0:
|
422 |
-
if position_ids is None:
|
423 |
-
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
|
424 |
-
position_embeddings = self.position_embeddings(position_ids)
|
425 |
-
embeddings = embeddings + position_embeddings
|
426 |
-
return embeddings
|
427 |
-
|
428 |
-
class NomicBertMLP(nn.Module):
|
429 |
-
def __init__(
|
430 |
-
self,
|
431 |
-
in_features,
|
432 |
-
hidden_features=None,
|
433 |
-
out_features=None,
|
434 |
-
activation=F.gelu,
|
435 |
-
bias1=True,
|
436 |
-
bias2=True,
|
437 |
-
return_residual=False,
|
438 |
-
fused_bias_fc=False,
|
439 |
-
):
|
440 |
-
super().__init__()
|
441 |
-
out_features = out_features if out_features is not None else in_features
|
442 |
-
hidden_features = hidden_features if hidden_features is not None else in_features * 4
|
443 |
-
self.return_residual = return_residual
|
444 |
-
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
|
445 |
-
approximate = (
|
446 |
-
"tanh"
|
447 |
-
if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
|
448 |
-
else "none"
|
449 |
-
)
|
450 |
-
self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
|
451 |
-
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
452 |
-
|
453 |
-
def forward(self, x):
|
454 |
-
y = self.fc1(x)
|
455 |
-
y = self.activation(y)
|
456 |
-
y = self.fc2(y)
|
457 |
-
return y if not self.return_residual else (y, x)
|
458 |
-
|
459 |
-
|
460 |
-
class NomciBertGatedMLP(nn.Module):
|
461 |
-
def __init__(
|
462 |
-
self,
|
463 |
-
in_features,
|
464 |
-
hidden_features=None,
|
465 |
-
out_features=None,
|
466 |
-
activation=F.sigmoid,
|
467 |
-
bias1=True,
|
468 |
-
bias2=True,
|
469 |
-
multiple_of=256,
|
470 |
-
return_residual=False,
|
471 |
-
fused_bias_fc=True,
|
472 |
-
device=None,
|
473 |
-
dtype=None,
|
474 |
-
):
|
475 |
-
super().__init__()
|
476 |
-
out_features = out_features if out_features is not None else in_features
|
477 |
-
hidden_features = (
|
478 |
-
hidden_features if hidden_features is not None else int(8 * in_features / 3)
|
479 |
-
)
|
480 |
-
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of
|
481 |
-
self.return_residual = return_residual
|
482 |
-
|
483 |
-
self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
|
484 |
-
self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
|
485 |
-
self.activation = activation
|
486 |
-
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
487 |
-
|
488 |
-
def forward(self, x):
|
489 |
-
y = self.fc11(x)
|
490 |
-
gate = self.fc12(x)
|
491 |
-
if self.activation == F.sigmoid: # Special case for GLU
|
492 |
-
y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
|
493 |
-
else:
|
494 |
-
y = y * self.activation(gate)
|
495 |
-
y = self.fc2(y)
|
496 |
-
return y if not self.return_residual else (y, x)
|
497 |
-
|
498 |
-
|
499 |
-
def rotate_half(x, interleaved=False):
|
500 |
-
if not interleaved:
|
501 |
-
x1, x2 = x.chunk(2, dim=-1)
|
502 |
-
return torch.cat((-x2, x1), dim=-1)
|
503 |
-
else:
|
504 |
-
x1, x2 = x[..., ::2], x[..., 1::2]
|
505 |
-
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
|
506 |
-
|
507 |
-
|
508 |
-
def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
|
509 |
-
"""
|
510 |
-
x: (batch_size, seqlen, nheads, headdim)
|
511 |
-
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
512 |
-
"""
|
513 |
-
ro_dim = cos.shape[-1] * 2
|
514 |
-
assert ro_dim <= x.shape[-1]
|
515 |
-
cos, sin = (
|
516 |
-
cos[offset: offset + x.shape[1]],
|
517 |
-
sin[offset: offset + x.shape[1]],
|
518 |
-
)
|
519 |
-
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
520 |
-
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
521 |
-
return torch.cat(
|
522 |
-
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
|
523 |
-
dim=-1,
|
524 |
-
)
|
525 |
-
|
526 |
-
|
527 |
-
class NomicBertRotaryEmbedding(nn.Module):
|
528 |
-
def __init__(
|
529 |
-
self,
|
530 |
-
dim: int,
|
531 |
-
base=10000.0,
|
532 |
-
interleaved=False,
|
533 |
-
scale_base=None,
|
534 |
-
pos_idx_in_fp32=True,
|
535 |
-
device=None,
|
536 |
-
):
|
537 |
-
"""
|
538 |
-
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
539 |
-
of 1st half and 2nd half (GPT-NeoX style).
|
540 |
-
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
541 |
-
otherwise they might be in lower precision.
|
542 |
-
This option was added because previously (before 2023-07-02), when we construct
|
543 |
-
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
544 |
-
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
545 |
-
self.inv_freq would be bf16, and the position indices are also in bf16.
|
546 |
-
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
547 |
-
embeddings for some positions will coincide.
|
548 |
-
To maintain compatibility with models previously trained in pure bf16,
|
549 |
-
we add this option.
|
550 |
-
"""
|
551 |
-
super().__init__()
|
552 |
-
self.dim = dim
|
553 |
-
self.base = float(base)
|
554 |
-
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
555 |
-
# Generate and save the inverse frequency buffer (non trainable)
|
556 |
-
inv_freq = self._compute_inv_freq(device)
|
557 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
558 |
-
self.interleaved = interleaved
|
559 |
-
self.scale_base = scale_base
|
560 |
-
scale = (
|
561 |
-
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
562 |
-
if scale_base is not None
|
563 |
-
else None
|
564 |
-
)
|
565 |
-
self.register_buffer("scale", scale, persistent=False)
|
566 |
-
|
567 |
-
self._seq_len_cached = 0
|
568 |
-
self._cos_cached = None
|
569 |
-
self._sin_cached = None
|
570 |
-
self._cos_k_cached = None
|
571 |
-
self._sin_k_cached = None
|
572 |
-
|
573 |
-
def _compute_inv_freq(self, device=None):
|
574 |
-
return 1.0 / (
|
575 |
-
self.base
|
576 |
-
** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
|
577 |
-
)
|
578 |
-
|
579 |
-
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
580 |
-
# Reset the tables if the sequence length has changed,
|
581 |
-
# if we're on a new device (possibly due to tracing for instance),
|
582 |
-
# or if we're switching from inference mode to training
|
583 |
-
if (
|
584 |
-
seqlen > self._seq_len_cached
|
585 |
-
or self._cos_cached is None
|
586 |
-
or self._cos_cached.device != device
|
587 |
-
or self._cos_cached.dtype != dtype
|
588 |
-
or (self.training and self._cos_cached.is_inference())
|
589 |
-
):
|
590 |
-
self._seq_len_cached = seqlen
|
591 |
-
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
592 |
-
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
593 |
-
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
594 |
-
if self.pos_idx_in_fp32:
|
595 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
596 |
-
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
597 |
-
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
598 |
-
# cos & sin output to change significantly.
|
599 |
-
# We want to recompute self.inv_freq if it was not loaded in fp32
|
600 |
-
if self.inv_freq.dtype != torch.float32:
|
601 |
-
inv_freq = self._compute_inv_freq(device=device)
|
602 |
-
else:
|
603 |
-
inv_freq = self.inv_freq
|
604 |
-
else:
|
605 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
606 |
-
inv_freq = self.inv_freq
|
607 |
-
# Don't do einsum, it converts fp32 to fp16 under AMP
|
608 |
-
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
609 |
-
freqs = torch.outer(t, inv_freq)
|
610 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
611 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
612 |
-
|
613 |
-
def forward(
|
614 |
-
self,
|
615 |
-
qkv: torch.Tensor,
|
616 |
-
kv: Optional[torch.Tensor] = None,
|
617 |
-
seqlen_offset: Union[int, torch.Tensor] = 0,
|
618 |
-
max_seqlen: Optional[int] = None,
|
619 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
620 |
-
"""
|
621 |
-
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
|
622 |
-
else it's just q of shape (batch, seqlen, nheads, headdim)
|
623 |
-
kv: (batch, seqlen, 2, nheads, headdim)
|
624 |
-
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
625 |
-
Most commonly used in inference when we have KV cache.
|
626 |
-
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
627 |
-
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
628 |
-
Apply rotary embedding *inplace* to qkv and / or kv.
|
629 |
-
"""
|
630 |
-
seqlen = qkv.shape[1]
|
631 |
-
if seqlen > self._seq_len_cached:
|
632 |
-
self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
|
633 |
-
elif max_seqlen is not None:
|
634 |
-
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
635 |
-
elif isinstance(seqlen_offset, int):
|
636 |
-
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
637 |
-
|
638 |
-
q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
639 |
-
k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
640 |
-
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
641 |
-
|
642 |
-
|
643 |
-
class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
|
644 |
-
def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
|
645 |
-
super().__init__(**kwargs)
|
646 |
-
self.rotary_scaling_factor = rotary_scaling_factor
|
647 |
-
self.max_position_embeddings = max_position_embeddings
|
648 |
-
|
649 |
-
|
650 |
-
def _compute_inv_freq(self, base=None, device=None):
|
651 |
-
if base is None:
|
652 |
-
base = self.base
|
653 |
-
return 1.0 / (
|
654 |
-
base
|
655 |
-
** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
|
656 |
-
)
|
657 |
-
|
658 |
-
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
659 |
-
# Reset the tables if the sequence length has changed,
|
660 |
-
# if we're on a new device (possibly due to tracing for instance),
|
661 |
-
# or if we're switching from inference mode to training
|
662 |
-
if seqlen > self.max_position_embeddings:
|
663 |
-
base = self.base * (
|
664 |
-
(self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
|
665 |
-
) ** (self.dim / (self.dim - 2))
|
666 |
-
inv_freq = self._compute_inv_freq(base=base, device=device)
|
667 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
668 |
-
|
669 |
-
if (
|
670 |
-
seqlen > self._seq_len_cached
|
671 |
-
or self._cos_cached is None
|
672 |
-
or self._cos_cached.device != device
|
673 |
-
or self._cos_cached.dtype != dtype
|
674 |
-
or (self.training and self._cos_cached.is_inference())
|
675 |
-
):
|
676 |
-
self._seq_len_cached = seqlen
|
677 |
-
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
678 |
-
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
679 |
-
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
680 |
-
if self.pos_idx_in_fp32:
|
681 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
682 |
-
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
683 |
-
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
684 |
-
# cos & sin output to change significantly.
|
685 |
-
# We want to recompute self.inv_freq if it was not loaded in fp32
|
686 |
-
if self.inv_freq.dtype != torch.float32:
|
687 |
-
if seqlen > self.max_position_embeddings:
|
688 |
-
base = self.base * (
|
689 |
-
(self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
|
690 |
-
) ** (self.dim / (self.dim - 2))
|
691 |
-
else:
|
692 |
-
base = self.base
|
693 |
-
inv_freq = self._compute_inv_freq(device=device, base=base)
|
694 |
-
else:
|
695 |
-
inv_freq = self.inv_freq
|
696 |
-
else:
|
697 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
698 |
-
inv_freq = self.inv_freq
|
699 |
-
# Don't do einsum, it converts fp32 to fp16 under AMP
|
700 |
-
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
701 |
-
freqs = torch.outer(t, inv_freq)
|
702 |
-
if self.scale is None:
|
703 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
704 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
705 |
-
else:
|
706 |
-
power = (
|
707 |
-
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
708 |
-
- seqlen // 2
|
709 |
-
) / self.scale_base
|
710 |
-
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
711 |
-
# We want the multiplication by scale to happen in fp32
|
712 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
713 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
714 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
715 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
716 |
-
|
717 |
-
class NomicBertAttention(nn.Module):
|
718 |
-
"""Multi-head self-attention and cross-attention"""
|
719 |
-
|
720 |
-
def __init__(
|
721 |
-
self,
|
722 |
-
config,
|
723 |
-
) -> None:
|
724 |
-
"""
|
725 |
-
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
|
726 |
-
return_residual: whether to return the input x along with the output. This is for
|
727 |
-
performance reason: for post-norm architecture, returning the input allows us
|
728 |
-
to fuse the backward of nn.Linear with the residual connection.
|
729 |
-
"""
|
730 |
-
super().__init__()
|
731 |
-
self.embed_dim = config.n_embd
|
732 |
-
self.use_flash_attn = config.use_flash_attn
|
733 |
-
self.fused_bias_fc = config.fused_bias_fc
|
734 |
-
|
735 |
-
self.num_heads = config.n_head
|
736 |
-
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
|
737 |
-
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
738 |
-
self.head_dim = self.embed_dim // self.num_heads
|
739 |
-
# we don't really support mqa / gqa for now
|
740 |
-
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
741 |
-
|
742 |
-
self.register_buffer(
|
743 |
-
"norm_factor",
|
744 |
-
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
745 |
-
persistent=False,
|
746 |
-
)
|
747 |
-
|
748 |
-
self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
|
749 |
-
if self.rotary_emb_dim > 0:
|
750 |
-
if config.rotary_scaling_factor:
|
751 |
-
self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
|
752 |
-
dim=self.rotary_emb_dim,
|
753 |
-
base=config.rotary_emb_base,
|
754 |
-
scale_base=config.rotary_emb_scale_base,
|
755 |
-
interleaved=config.rotary_emb_interleaved,
|
756 |
-
rotary_scaling_factor=config.rotary_scaling_factor,
|
757 |
-
max_position_embeddings=config.n_positions,
|
758 |
-
)
|
759 |
-
else:
|
760 |
-
self.rotary_emb = NomicBertRotaryEmbedding(
|
761 |
-
dim=self.rotary_emb_dim,
|
762 |
-
base=config.rotary_emb_base,
|
763 |
-
scale_base=config.rotary_emb_scale_base,
|
764 |
-
interleaved=config.rotary_emb_interleaved,
|
765 |
-
)
|
766 |
-
# bug in xformers: https://github.com/facebookresearch/xformers/issues/841
|
767 |
-
# uses the head dimension instead of the sequence dimension
|
768 |
-
self.rotary_head_dim = getattr(config, "rotary_head_dim", False)
|
769 |
-
|
770 |
-
self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)
|
771 |
-
|
772 |
-
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
773 |
-
self.causal = config.causal
|
774 |
-
self.drop = nn.Dropout(config.attn_pdrop)
|
775 |
-
|
776 |
-
def forward(
|
777 |
-
self,
|
778 |
-
hidden_states: torch.Tensor,
|
779 |
-
attention_mask: Optional[torch.Tensor] = None,
|
780 |
-
position_ids: Optional[torch.LongTensor] = None,
|
781 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
782 |
-
output_attentions: bool = False,
|
783 |
-
use_cache: bool = False,
|
784 |
-
is_padded_inputs: Optional[bool] = True,
|
785 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
786 |
-
max_seq_len: Optional[int] = None,
|
787 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
788 |
-
|
789 |
-
has_layer_past = past_key_value is not None
|
790 |
-
|
791 |
-
if has_layer_past:
|
792 |
-
past_key_value = past_key_value[0]
|
793 |
-
past_len = past_key_value[1]
|
794 |
-
else:
|
795 |
-
past_len = 0
|
796 |
-
|
797 |
-
qkv = self.Wqkv(hidden_states)
|
798 |
-
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
799 |
-
|
800 |
-
past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None
|
801 |
-
|
802 |
-
if self.rotary_emb_dim > 0:
|
803 |
-
if self.rotary_head_dim:
|
804 |
-
qkv = rearrange(qkv, "b s three h d -> b h three s d")
|
805 |
-
qkv = self.rotary_emb(qkv, seqlen_offset=past_len)
|
806 |
-
|
807 |
-
if self.rotary_head_dim:
|
808 |
-
qkv = rearrange(qkv, "b h three s d -> b s three h d")
|
809 |
-
|
810 |
-
query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
|
811 |
-
|
812 |
-
query = query.permute(0, 2, 1, 3)
|
813 |
-
key = key.permute(0, 2, 1, 3)
|
814 |
-
value = value.permute(0, 2, 1, 3)
|
815 |
-
|
816 |
-
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
|
817 |
-
if attention_mask is not None:
|
818 |
-
attention_scores = attention_scores + attention_mask
|
819 |
-
|
820 |
-
attentions_probs = F.softmax(attention_scores, dim=-1)
|
821 |
-
attentions_probs = self.drop(attentions_probs)
|
822 |
-
|
823 |
-
attn_output = torch.matmul(attentions_probs, value)
|
824 |
-
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
|
825 |
-
|
826 |
-
attn_output = self.out_proj(attn_output)
|
827 |
-
|
828 |
-
return attn_output
|
829 |
-
|
830 |
-
|
831 |
-
class NomicBertBlock(nn.Module):
|
832 |
-
def __init__(
|
833 |
-
self,
|
834 |
-
config,
|
835 |
-
):
|
836 |
-
super().__init__()
|
837 |
-
self.prenorm = config.prenorm
|
838 |
-
self.fused_dropout_add_ln = config.fused_dropout_add_ln
|
839 |
-
|
840 |
-
self.attn = NomicBertAttention(config)
|
841 |
-
activation = (
|
842 |
-
F.sigmoid
|
843 |
-
if config.activation_function == "glu"
|
844 |
-
else (F.silu if config.activation_function == "swiglu" else F.gelu)
|
845 |
-
)
|
846 |
-
if config.activation_function in ["glu", "swiglu", "geglu"]:
|
847 |
-
self.mlp = NomciBertGatedMLP(config.n_embd, hidden_features=config.n_inner, bias1=config.mlp_fc1_bias, bias2=config.mlp_fc2_bias, activation=activation, fused_bias_fc=config.fused_bias_fc)
|
848 |
-
else:
|
849 |
-
self.mlp = NomicBertMLP(config.n_embd, hidden_features=config.n_inner, bias1=config.mlp_fc1_bias, bias2=config.mlp_fc2_bias, activation=activation, fused_bias_fc=config.fused_bias_fc)
|
850 |
-
|
851 |
-
self.dropout1 = nn.Dropout(config.resid_pdrop)
|
852 |
-
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
853 |
-
self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
854 |
-
self.dropout2 = nn.Dropout(config.resid_pdrop)
|
855 |
-
|
856 |
-
def forward(
|
857 |
-
self,
|
858 |
-
hidden_states: torch.Tensor,
|
859 |
-
hidden_states2: torch.Tensor,
|
860 |
-
residual: Optional[torch.Tensor] = None,
|
861 |
-
attention_mask: Optional[torch.Tensor] = None,
|
862 |
-
position_ids: Optional[torch.LongTensor] = None,
|
863 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
864 |
-
is_padded_inputs: Optional[bool] = True,
|
865 |
-
output_attentions: Optional[bool] = False,
|
866 |
-
use_cache: Optional[bool] = False,
|
867 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
868 |
-
max_seq_len: Optional[int] = None,
|
869 |
-
):
|
870 |
-
r"""Pass the input through the encoder layer.
|
871 |
-
|
872 |
-
Args:
|
873 |
-
hidden_states: the sequence to the encoder layer (required).
|
874 |
-
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
875 |
-
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
876 |
-
before applying the query projection. Useful for e.g., ViT where we only care
|
877 |
-
about the CLS token in the last layer.
|
878 |
-
"""
|
879 |
-
if self.prenorm:
|
880 |
-
dropped = self.dropout1(hidden_states)
|
881 |
-
residual = (dropped + residual) if residual is not None else dropped
|
882 |
-
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
883 |
-
hidden_states = self.attn(hidden_states, attention_mask=attention_mask, is_padded_inputs=is_padded_inputs, cu_seqlens=cu_seqlens, max_seq_len=max_seq_len)
|
884 |
-
|
885 |
-
dropped = self.dropout2(hidden_states)
|
886 |
-
residual = (dropped + residual) if residual is not None else dropped
|
887 |
-
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
|
888 |
-
hidden_states = self.mlp(hidden_states)
|
889 |
-
|
890 |
-
return hidden_states, None, residual
|
891 |
-
else:
|
892 |
-
assert residual is None
|
893 |
-
attn_outputs = self.attn(hidden_states,
|
894 |
-
attention_mask=attention_mask,
|
895 |
-
is_padded_inputs=is_padded_inputs,
|
896 |
-
cu_seqlens=cu_seqlens,
|
897 |
-
max_seq_len=max_seq_len)
|
898 |
-
hidden_states = self.norm1(
|
899 |
-
(self.dropout1(attn_outputs) + hidden_states).to(
|
900 |
-
dtype=self.norm1.weight.dtype
|
901 |
-
)
|
902 |
-
)
|
903 |
-
mlp_out = self.mlp(hidden_states)
|
904 |
-
|
905 |
-
hidden_states = self.norm2(
|
906 |
-
(self.dropout2(mlp_out) + hidden_states).to(
|
907 |
-
dtype=self.norm2.weight.dtype
|
908 |
-
)
|
909 |
-
)
|
910 |
-
return hidden_states, None, None
|
911 |
-
|
912 |
-
|
913 |
-
class NomicBertEncoder(nn.Module):
|
914 |
-
def __init__(self, config: GPT2Config):
|
915 |
-
super().__init__()
|
916 |
-
self.layers = nn.ModuleList(
|
917 |
-
[NomicBertBlock(config) for _ in range(config.n_layer)]
|
918 |
-
)
|
919 |
-
self.gradient_checkpointing = False
|
920 |
-
self.config = config
|
921 |
-
|
922 |
-
def forward(self,
|
923 |
-
hidden_states: torch.LongTensor = None,
|
924 |
-
attention_mask: Optional[torch.Tensor] = None,
|
925 |
-
position_ids: Optional[torch.LongTensor] = None,
|
926 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
927 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
928 |
-
use_cache: Optional[bool] = None,
|
929 |
-
output_attentions: Optional[bool] = None,
|
930 |
-
output_hidden_states: Optional[bool] = None,
|
931 |
-
return_dict: Optional[bool] = None,
|
932 |
-
is_padded_inputs: Optional[bool] = True,):
|
933 |
-
|
934 |
-
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
935 |
-
This means that we only compute the last layer output for these tokens.
|
936 |
-
subset_mask: (batch, seqlen), dtype=torch.bool
|
937 |
-
"""
|
938 |
-
hidden_states2 = None
|
939 |
-
residual = None
|
940 |
-
|
941 |
-
|
942 |
-
for _, layer in enumerate(self.layers):
|
943 |
-
if self.gradient_checkpointing and self.training:
|
944 |
-
|
945 |
-
def create_custom_forward(module):
|
946 |
-
def custom_forward(*inputs):
|
947 |
-
# None for past_key_value
|
948 |
-
return module(*inputs)
|
949 |
-
|
950 |
-
return custom_forward
|
951 |
-
|
952 |
-
hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
|
953 |
-
create_custom_forward(layer),
|
954 |
-
hidden_states,
|
955 |
-
hidden_states2,
|
956 |
-
residual,
|
957 |
-
attention_mask,
|
958 |
-
None,
|
959 |
-
None,
|
960 |
-
is_padded_inputs,
|
961 |
-
# if you freeze ANY layers, you need `use_reentrant=False`
|
962 |
-
# https://github.com/huggingface/transformers/issues/21381
|
963 |
-
# https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
|
964 |
-
use_reentrant=False,
|
965 |
-
)
|
966 |
-
|
967 |
-
else:
|
968 |
-
hidden_states, hidden_states2, residual = layer(
|
969 |
-
hidden_states,
|
970 |
-
hidden_states2,
|
971 |
-
residual,
|
972 |
-
attention_mask,
|
973 |
-
position_ids,
|
974 |
-
None,
|
975 |
-
is_padded_inputs,
|
976 |
-
output_attentions,
|
977 |
-
use_cache,
|
978 |
-
)
|
979 |
-
return hidden_states
|
980 |
-
|
981 |
-
|
982 |
-
class NomicBertPooler(nn.Module):
|
983 |
-
def __init__(self, config):
|
984 |
-
super().__init__()
|
985 |
-
self.dense = nn.Linear(config.n_embd, config.n_embd)
|
986 |
-
self.activation = nn.Tanh()
|
987 |
-
|
988 |
-
def forward(self, hidden_states, pool=True):
|
989 |
-
# We "pool" the model by simply taking the hidden state corresponding
|
990 |
-
# to the first token.
|
991 |
-
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
992 |
-
pooled_output = self.dense(first_token_tensor)
|
993 |
-
pooled_output = self.activation(pooled_output)
|
994 |
-
return pooled_output
|
995 |
-
|
996 |
-
|
997 |
-
class NomicBertPredictionHeadTransform(nn.Module):
|
998 |
-
def __init__(self, config):
|
999 |
-
super().__init__()
|
1000 |
-
self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
|
1001 |
-
approximate = (
|
1002 |
-
"tanh"
|
1003 |
-
if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
|
1004 |
-
else "none"
|
1005 |
-
)
|
1006 |
-
if config.activation_function == "swiglu":
|
1007 |
-
self.transform_act_fn = F.silu
|
1008 |
-
else:
|
1009 |
-
self.transform_act_fn = nn.GELU(approximate=approximate)
|
1010 |
-
|
1011 |
-
self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1012 |
-
|
1013 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1014 |
-
hidden_states = self.dense(hidden_states)
|
1015 |
-
hidden_states = self.transform_act_fn(hidden_states)
|
1016 |
-
hidden_states = self.layer_norm(hidden_states)
|
1017 |
-
|
1018 |
-
return hidden_states
|
1019 |
-
|
1020 |
-
|
1021 |
-
class NomicBertLMPredictionHead(nn.Module):
|
1022 |
-
def __init__(self, config):
|
1023 |
-
super().__init__()
|
1024 |
-
|
1025 |
-
self.transform = NomicBertPredictionHeadTransform(config)
|
1026 |
-
|
1027 |
-
self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)
|
1028 |
-
|
1029 |
-
def forward(self, hidden_states):
|
1030 |
-
hidden_states = self.transform(hidden_states)
|
1031 |
-
hidden_states = self.decoder(hidden_states)
|
1032 |
-
return hidden_states
|
1033 |
-
|
1034 |
-
|
1035 |
-
class NomicBertPreTrainingHeads(nn.Module):
|
1036 |
-
def __init__(self, config):
|
1037 |
-
super().__init__()
|
1038 |
-
self.predictions = NomicBertLMPredictionHead(config)
|
1039 |
-
|
1040 |
-
def forward(self, sequence_output):
|
1041 |
-
prediction_scores = self.predictions(sequence_output)
|
1042 |
-
return prediction_scores
|
1043 |
-
|
1044 |
-
|
1045 |
-
class NomicBertModel(NomicBertPreTrainedModel):
|
1046 |
-
def __init__(self, config: GPT2Config, add_pooling_layer=True):
|
1047 |
-
super().__init__(config)
|
1048 |
-
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
1049 |
-
if config.vocab_size % self.pad_vocab_size_multiple != 0:
|
1050 |
-
config.vocab_size += self.pad_vocab_size_multiple - (
|
1051 |
-
config.vocab_size % self.pad_vocab_size_multiple
|
1052 |
-
)
|
1053 |
-
|
1054 |
-
assert config.activation_function in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh", "swiglu", "geglu", "glu"]
|
1055 |
-
|
1056 |
-
self.embeddings = NomicBertEmbeddings(
|
1057 |
-
config
|
1058 |
-
)
|
1059 |
-
self.emb_drop = nn.Dropout(config.resid_pdrop)
|
1060 |
-
self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1061 |
-
self.encoder = NomicBertEncoder(config)
|
1062 |
-
self.pooler = NomicBertPooler(config) if add_pooling_layer else None
|
1063 |
-
|
1064 |
-
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
1065 |
-
|
1066 |
-
def forward(
|
1067 |
-
self,
|
1068 |
-
input_ids,
|
1069 |
-
position_ids=None,
|
1070 |
-
token_type_ids=None,
|
1071 |
-
attention_mask=None,
|
1072 |
-
return_dict=None,
|
1073 |
-
):
|
1074 |
-
if token_type_ids is None:
|
1075 |
-
token_type_ids = torch.zeros_like(input_ids)
|
1076 |
-
hidden_states = self.embeddings(
|
1077 |
-
input_ids, position_ids=position_ids, token_type_ids=token_type_ids
|
1078 |
-
)
|
1079 |
-
hidden_states = self.emb_ln(hidden_states)
|
1080 |
-
hidden_states = self.emb_drop(hidden_states)
|
1081 |
-
|
1082 |
-
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
|
1083 |
-
sequence_output = self.encoder(
|
1084 |
-
hidden_states, attention_mask=attention_mask, return_dict=return_dict,
|
1085 |
-
)
|
1086 |
-
|
1087 |
-
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1088 |
-
|
1089 |
-
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1090 |
-
last_hidden_state=sequence_output,
|
1091 |
-
pooler_output=pooled_output,
|
1092 |
-
)
|
1093 |
-
|
1094 |
-
|
1095 |
-
class NomicBertForPreTraining(NomicBertPreTrainedModel):
|
1096 |
-
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1097 |
-
|
1098 |
-
def __init__(self, config: GPT2Config):
|
1099 |
-
super().__init__(config)
|
1100 |
-
|
1101 |
-
self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
|
1102 |
-
self.cls = NomicBertPreTrainingHeads(config)
|
1103 |
-
self.mlm_loss = nn.CrossEntropyLoss()
|
1104 |
-
|
1105 |
-
# Initialize weights and apply final processing
|
1106 |
-
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
1107 |
-
self.tie_weights()
|
1108 |
-
|
1109 |
-
def tie_weights(self):
|
1110 |
-
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
|
1111 |
-
|
1112 |
-
def forward(
|
1113 |
-
self,
|
1114 |
-
input_ids,
|
1115 |
-
position_ids=None,
|
1116 |
-
token_type_ids=None,
|
1117 |
-
attention_mask=None,
|
1118 |
-
labels=None,
|
1119 |
-
):
|
1120 |
-
"""
|
1121 |
-
If labels are provided, they must be -100 for masked out tokens (as specified in the attention
|
1122 |
-
mask).
|
1123 |
-
Outputs:
|
1124 |
-
if `labels` and `next_sentence_label` are not `None`:
|
1125 |
-
Outputs the total_loss which is the sum of the masked language modeling loss and the next
|
1126 |
-
sentence classification loss.
|
1127 |
-
if `labels` or `next_sentence_label` is `None`:
|
1128 |
-
Outputs a tuple comprising
|
1129 |
-
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
|
1130 |
-
- the next sentence classification logits of shape [batch_size, 2].
|
1131 |
-
|
1132 |
-
"""
|
1133 |
-
outputs = self.bert(
|
1134 |
-
input_ids,
|
1135 |
-
position_ids=position_ids,
|
1136 |
-
token_type_ids=token_type_ids,
|
1137 |
-
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
1138 |
-
)
|
1139 |
-
sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output
|
1140 |
-
|
1141 |
-
prediction_scores = self.cls(sequence_output)
|
1142 |
-
|
1143 |
-
total_loss = None
|
1144 |
-
if labels is not None:
|
1145 |
-
masked_lm_loss = self.mlm_loss(
|
1146 |
-
rearrange(prediction_scores, "... v -> (...) v"),
|
1147 |
-
rearrange(labels, "... -> (...)"),
|
1148 |
-
)
|
1149 |
-
total_loss = masked_lm_loss.float()
|
1150 |
-
|
1151 |
-
return MaskedLMOutput(
|
1152 |
-
loss=total_loss,
|
1153 |
-
logits=prediction_scores,
|
1154 |
-
hidden_states=outputs.hidden_states,
|
1155 |
-
attentions=None,
|
1156 |
-
)
|
1157 |
-
|
1158 |
-
|
1159 |
-
class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
|
1160 |
-
def __init__(self, config):
|
1161 |
-
super().__init__(config)
|
1162 |
-
self.num_labels = config.num_labels
|
1163 |
-
self.config = config
|
1164 |
-
|
1165 |
-
self.bert = NomicBertModel(config)
|
1166 |
-
classifier_dropout = (
|
1167 |
-
getattr(config, "classifier_dropout", config.embd_pdrop)
|
1168 |
-
)
|
1169 |
-
self.dropout = nn.Dropout(classifier_dropout)
|
1170 |
-
self.classifier = nn.Linear(config.n_embd, config.num_labels)
|
1171 |
-
|
1172 |
-
# Initialize weights and apply final processing
|
1173 |
-
self.post_init()
|
1174 |
-
|
1175 |
-
def forward(
|
1176 |
-
self,
|
1177 |
-
input_ids: Optional[torch.Tensor] = None,
|
1178 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1179 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
1180 |
-
position_ids: Optional[torch.Tensor] = None,
|
1181 |
-
head_mask: Optional[torch.Tensor] = None,
|
1182 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
1183 |
-
labels: Optional[torch.Tensor] = None,
|
1184 |
-
output_attentions: Optional[bool] = None,
|
1185 |
-
output_hidden_states: Optional[bool] = None,
|
1186 |
-
return_dict: Optional[bool] = None,
|
1187 |
-
):
|
1188 |
-
r"""
|
1189 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1190 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1191 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1192 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1193 |
-
"""
|
1194 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1195 |
-
outputs = self.bert(
|
1196 |
-
input_ids,
|
1197 |
-
position_ids=position_ids,
|
1198 |
-
token_type_ids=token_type_ids,
|
1199 |
-
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
1200 |
-
)
|
1201 |
-
|
1202 |
-
pooled_output = outputs[1]
|
1203 |
-
|
1204 |
-
pooled_output = self.dropout(pooled_output)
|
1205 |
-
logits = self.classifier(pooled_output)
|
1206 |
-
|
1207 |
-
loss = None
|
1208 |
-
if labels is not None:
|
1209 |
-
if self.config.problem_type is None:
|
1210 |
-
if self.num_labels == 1:
|
1211 |
-
self.config.problem_type = "regression"
|
1212 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1213 |
-
self.config.problem_type = "single_label_classification"
|
1214 |
-
else:
|
1215 |
-
self.config.problem_type = "multi_label_classification"
|
1216 |
-
|
1217 |
-
if self.config.problem_type == "regression":
|
1218 |
-
loss_fct = nn.MSELoss()
|
1219 |
-
if self.num_labels == 1:
|
1220 |
-
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1221 |
-
else:
|
1222 |
-
loss = loss_fct(logits, labels)
|
1223 |
-
elif self.config.problem_type == "single_label_classification":
|
1224 |
-
loss_fct = nn.CrossEntropyLoss()
|
1225 |
-
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1226 |
-
elif self.config.problem_type == "multi_label_classification":
|
1227 |
-
loss_fct = nn.BCEWithLogitsLoss()
|
1228 |
-
loss = loss_fct(logits, labels)
|
1229 |
-
if not return_dict:
|
1230 |
-
output = (logits,) + outputs[2:]
|
1231 |
-
return ((loss,) + output) if loss is not None else output
|
1232 |
-
|
1233 |
-
return SequenceClassifierOutput(
|
1234 |
-
loss=loss,
|
1235 |
-
logits=logits,
|
1236 |
-
hidden_states=outputs.hidden_states,
|
1237 |
-
attentions=outputs.attentions,
|
1238 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/modules.json
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"idx": 0,
|
4 |
-
"name": "0",
|
5 |
-
"path": "",
|
6 |
-
"type": "sentence_transformers.models.Transformer"
|
7 |
-
},
|
8 |
-
{
|
9 |
-
"idx": 1,
|
10 |
-
"name": "1",
|
11 |
-
"path": "1_Pooling",
|
12 |
-
"type": "sentence_transformers.models.Pooling"
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"idx": 2,
|
16 |
-
"name": "2",
|
17 |
-
"path": "2_Normalize",
|
18 |
-
"type": "sentence_transformers.models.Normalize"
|
19 |
-
}
|
20 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/onnx/model.onnx
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:347440e93b5ec979fdcf6041b72721aade7b9680c16022e2830db7115ff6fd9f
|
3 |
-
size 547552426
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/onnx/model_quantized.onnx
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b7941066a6529a287e2502ea6cb68ff82006d311eac53627dc88c259cbcbda64
|
3 |
-
size 138355983
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/pytorch_model.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9fc78c00133aac4e12f358cfe9546e893cb82bb9bb7956506fbbcaa1700ce17c
|
3 |
-
size 546961866
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/sentence_bert_config.json
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"max_seq_length": 8192,
|
3 |
-
"do_lower_case": false
|
4 |
-
}
|
|
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/special_tokens_map.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cls_token": "[CLS]",
|
3 |
-
"mask_token": "[MASK]",
|
4 |
-
"pad_token": "[PAD]",
|
5 |
-
"sep_token": "[SEP]",
|
6 |
-
"unk_token": "[UNK]"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/tokenizer.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
pretrained/nomic-ai/nomic-embed-text-v1/tokenizer_config.json
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"0": {
|
4 |
-
"content": "[PAD]",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"100": {
|
12 |
-
"content": "[UNK]",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
},
|
19 |
-
"101": {
|
20 |
-
"content": "[CLS]",
|
21 |
-
"lstrip": false,
|
22 |
-
"normalized": false,
|
23 |
-
"rstrip": false,
|
24 |
-
"single_word": false,
|
25 |
-
"special": true
|
26 |
-
},
|
27 |
-
"102": {
|
28 |
-
"content": "[SEP]",
|
29 |
-
"lstrip": false,
|
30 |
-
"normalized": false,
|
31 |
-
"rstrip": false,
|
32 |
-
"single_word": false,
|
33 |
-
"special": true
|
34 |
-
},
|
35 |
-
"103": {
|
36 |
-
"content": "[MASK]",
|
37 |
-
"lstrip": false,
|
38 |
-
"normalized": false,
|
39 |
-
"rstrip": false,
|
40 |
-
"single_word": false,
|
41 |
-
"special": true
|
42 |
-
}
|
43 |
-
},
|
44 |
-
"clean_up_tokenization_spaces": true,
|
45 |
-
"cls_token": "[CLS]",
|
46 |
-
"do_lower_case": true,
|
47 |
-
"mask_token": "[MASK]",
|
48 |
-
"model_max_length": 8192,
|
49 |
-
"pad_token": "[PAD]",
|
50 |
-
"sep_token": "[SEP]",
|
51 |
-
"strip_accents": null,
|
52 |
-
"tokenize_chinese_chars": true,
|
53 |
-
"tokenizer_class": "BertTokenizer",
|
54 |
-
"unk_token": "[UNK]"
|
55 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/nomic-ai/nomic-embed-text-v1/vocab.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/.gitattributes
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/README.md
DELETED
@@ -1,181 +0,0 @@
|
|
1 |
-
---
|
2 |
-
datasets:
|
3 |
-
- c-s-ale/alpaca-gpt4-data
|
4 |
-
- Open-Orca/OpenOrca
|
5 |
-
- Intel/orca_dpo_pairs
|
6 |
-
- allenai/ultrafeedback_binarized_cleaned
|
7 |
-
language:
|
8 |
-
- en
|
9 |
-
license: cc-by-nc-4.0
|
10 |
-
base_model:
|
11 |
-
- upstage/SOLAR-10.7B-v1.0
|
12 |
-
---
|
13 |
-
|
14 |
-
<p align="left">
|
15 |
-
<img src="https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0/resolve/main/solar_logo.png" width="150"/>
|
16 |
-
<p>
|
17 |
-
|
18 |
-
# **Meet 10.7B Solar: Elevating Performance with Upstage Depth UP Scaling!**
|
19 |
-
|
20 |
-
**(This model is [upstage/SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0) fine-tuned version for single-turn conversation.)**
|
21 |
-
|
22 |
-
|
23 |
-
# **Introduction**
|
24 |
-
We introduce SOLAR-10.7B, an advanced large language model (LLM) with 10.7 billion parameters, demonstrating superior performance in various natural language processing (NLP) tasks. It's compact, yet remarkably powerful, and demonstrates unparalleled state-of-the-art performance in models with parameters under 30B.
|
25 |
-
|
26 |
-
We present a methodology for scaling LLMs called depth up-scaling (DUS) , which encompasses architectural modifications and continued pretraining. In other words, we integrated Mistral 7B weights into the upscaled layers, and finally, continued pre-training for the entire model.
|
27 |
-
|
28 |
-
|
29 |
-
SOLAR-10.7B has remarkable performance. It outperforms models with up to 30B parameters, even surpassing the recent Mixtral 8X7B model. For detailed information, please refer to the experimental table.
|
30 |
-
Solar 10.7B is an ideal choice for fine-tuning. SOLAR-10.7B offers robustness and adaptability for your fine-tuning needs. Our simple instruction fine-tuning using the SOLAR-10.7B pre-trained model yields significant performance improvements.
|
31 |
-
|
32 |
-
For full details of this model please read our [paper](https://arxiv.org/abs/2312.15166).
|
33 |
-
|
34 |
-
|
35 |
-
# **Instruction Fine-Tuning Strategy**
|
36 |
-
|
37 |
-
We utilize state-of-the-art instruction fine-tuning methods including supervised fine-tuning (SFT) and direct preference optimization (DPO) [1].
|
38 |
-
|
39 |
-
We used a mixture of the following datasets
|
40 |
-
- c-s-ale/alpaca-gpt4-data (SFT)
|
41 |
-
- Open-Orca/OpenOrca (SFT)
|
42 |
-
- in-house generated data utilizing Metamath [2] (SFT, DPO)
|
43 |
-
- Intel/orca_dpo_pairs (DPO)
|
44 |
-
- allenai/ultrafeedback_binarized_cleaned (DPO)
|
45 |
-
|
46 |
-
where we were careful of data contamination by not using GSM8K samples when generating data and filtering tasks when applicable via the following list.
|
47 |
-
```python
|
48 |
-
filtering_task_list = [
|
49 |
-
'task228_arc_answer_generation_easy',
|
50 |
-
'ai2_arc/ARC-Challenge:1.0.0',
|
51 |
-
'ai2_arc/ARC-Easy:1.0.0',
|
52 |
-
'task229_arc_answer_generation_hard',
|
53 |
-
'hellaswag:1.1.0',
|
54 |
-
'task1389_hellaswag_completion',
|
55 |
-
'cot_gsm8k',
|
56 |
-
'cot_gsm8k_ii',
|
57 |
-
'drop:2.0.0',
|
58 |
-
'winogrande:1.1.0'
|
59 |
-
]
|
60 |
-
```
|
61 |
-
|
62 |
-
Using the datasets mentioned above, we applied SFT and iterative DPO training, a proprietary alignment strategy, to maximize the performance of our resulting model.
|
63 |
-
|
64 |
-
[1] Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning, C.D. and Finn, C., 2023. Direct preference optimization: Your language model is secretly a reward model. NeurIPS.
|
65 |
-
|
66 |
-
[2] Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok, J.T., Li, Z., Weller, A. and Liu, W., 2023. Metamath: Bootstrap your own mathematical questions for large language models. arXiv preprint arXiv:2309.12284.
|
67 |
-
|
68 |
-
# **Data Contamination Test Results**
|
69 |
-
|
70 |
-
Recently, there have been contamination issues in some models on the LLM leaderboard.
|
71 |
-
We note that we made every effort to exclude any benchmark-related datasets from training.
|
72 |
-
We also ensured the integrity of our model by conducting a data contamination test [3] that is also used by the HuggingFace team [4, 5].
|
73 |
-
|
74 |
-
Our results, with `result < 0.1, %:` being well below 0.9, indicate that our model is free from contamination.
|
75 |
-
|
76 |
-
*The data contamination test results of HellaSwag and Winograde will be added once [3] supports them.*
|
77 |
-
|
78 |
-
| Model | ARC | MMLU | TruthfulQA | GSM8K |
|
79 |
-
|------------------------------|-------|-------|-------|-------|
|
80 |
-
| **SOLAR-10.7B-Instruct-v1.0**| result < 0.1, %: 0.06 |result < 0.1, %: 0.15 | result < 0.1, %: 0.28 | result < 0.1, %: 0.70 |
|
81 |
-
|
82 |
-
[3] https://github.com/swj0419/detect-pretrain-code-contamination
|
83 |
-
|
84 |
-
[4] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474#657f2245365456e362412a06
|
85 |
-
|
86 |
-
[5] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/265#657b6debf81f6b44b8966230
|
87 |
-
|
88 |
-
# **Evaluation Results**
|
89 |
-
|
90 |
-
| Model | H6 | Model Size |
|
91 |
-
|----------------------------------------|-------|------------|
|
92 |
-
| **SOLAR-10.7B-Instruct-v1.0** | **74.20** | **~ 11B** |
|
93 |
-
| mistralai/Mixtral-8x7B-Instruct-v0.1 | 72.62 | ~ 46.7B |
|
94 |
-
| 01-ai/Yi-34B-200K | 70.81 | ~ 34B |
|
95 |
-
| 01-ai/Yi-34B | 69.42 | ~ 34B |
|
96 |
-
| mistralai/Mixtral-8x7B-v0.1 | 68.42 | ~ 46.7B |
|
97 |
-
| meta-llama/Llama-2-70b-hf | 67.87 | ~ 70B |
|
98 |
-
| tiiuae/falcon-180B | 67.85 | ~ 180B |
|
99 |
-
| **SOLAR-10.7B-v1.0** | **66.04** | **~11B** |
|
100 |
-
| mistralai/Mistral-7B-Instruct-v0.2 | 65.71 | ~ 7B |
|
101 |
-
| Qwen/Qwen-14B | 65.86 | ~ 14B |
|
102 |
-
| 01-ai/Yi-34B-Chat | 65.32 | ~34B |
|
103 |
-
| meta-llama/Llama-2-70b-chat-hf | 62.4 | ~ 70B |
|
104 |
-
| mistralai/Mistral-7B-v0.1 | 60.97 | ~ 7B |
|
105 |
-
| mistralai/Mistral-7B-Instruct-v0.1 | 54.96 | ~ 7B |
|
106 |
-
|
107 |
-
# **Usage Instructions**
|
108 |
-
|
109 |
-
This model has been fine-tuned primarily for single-turn conversation, making it less suitable for multi-turn conversations such as chat.
|
110 |
-
|
111 |
-
### **Version**
|
112 |
-
|
113 |
-
Make sure you have the correct version of the transformers library installed:
|
114 |
-
|
115 |
-
```sh
|
116 |
-
pip install transformers==4.35.2
|
117 |
-
```
|
118 |
-
|
119 |
-
### **Loading the Model**
|
120 |
-
|
121 |
-
Use the following Python code to load the model:
|
122 |
-
|
123 |
-
```python
|
124 |
-
import torch
|
125 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
126 |
-
|
127 |
-
tokenizer = AutoTokenizer.from_pretrained("Upstage/SOLAR-10.7B-Instruct-v1.0")
|
128 |
-
model = AutoModelForCausalLM.from_pretrained(
|
129 |
-
"Upstage/SOLAR-10.7B-Instruct-v1.0",
|
130 |
-
device_map="auto",
|
131 |
-
torch_dtype=torch.float16,
|
132 |
-
)
|
133 |
-
```
|
134 |
-
|
135 |
-
### **Conducting Single-Turn Conversation**
|
136 |
-
|
137 |
-
```python
|
138 |
-
conversation = [ {'role': 'user', 'content': 'Hello?'} ]
|
139 |
-
|
140 |
-
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
141 |
-
|
142 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
143 |
-
outputs = model.generate(**inputs, use_cache=True, max_length=4096)
|
144 |
-
output_text = tokenizer.decode(outputs[0])
|
145 |
-
print(output_text)
|
146 |
-
```
|
147 |
-
|
148 |
-
Below is an example of the output.
|
149 |
-
```
|
150 |
-
<s> ### User:
|
151 |
-
Hello?
|
152 |
-
|
153 |
-
### Assistant:
|
154 |
-
Hello, how can I assist you today? Please feel free to ask any questions or request help with a specific task.</s>
|
155 |
-
```
|
156 |
-
|
157 |
-
### **License**
|
158 |
-
- [upstage/SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0): apache-2.0
|
159 |
-
- [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0): cc-by-nc-4.0
|
160 |
-
- Since some non-commercial datasets such as Alpaca are used for fine-tuning, we release this model as cc-by-nc-4.0.
|
161 |
-
|
162 |
-
### **How to Cite**
|
163 |
-
|
164 |
-
Please cite this model using this format.
|
165 |
-
|
166 |
-
```bibtex
|
167 |
-
@misc{kim2023solar,
|
168 |
-
title={SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling},
|
169 |
-
author={Dahyun Kim and Chanjun Park and Sanghoon Kim and Wonsung Lee and Wonho Song and Yunsu Kim and Hyeonwoo Kim and Yungi Kim and Hyeonju Lee and Jihoo Kim and Changbae Ahn and Seonghoon Yang and Sukyung Lee and Hyunbyung Park and Gyoungjin Gim and Mikyoung Cha and Hwalsuk Lee and Sunghun Kim},
|
170 |
-
year={2023},
|
171 |
-
eprint={2312.15166},
|
172 |
-
archivePrefix={arXiv},
|
173 |
-
primaryClass={cs.CL}
|
174 |
-
}
|
175 |
-
```
|
176 |
-
|
177 |
-
### **The Upstage AI Team** ###
|
178 |
-
Upstage is creating the best LLM and DocAI. Please find more information at https://upstage.ai
|
179 |
-
|
180 |
-
### **Contact Us** ###
|
181 |
-
Any questions and suggestions, please use the discussion tab. If you want to contact us directly, drop an email to [contact@upstage.ai](mailto:contact@upstage.ai)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/config.json
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "upstage/SOLAR-10.7B-Instruct-v1.0",
|
3 |
-
"architectures": [
|
4 |
-
"LlamaForCausalLM"
|
5 |
-
],
|
6 |
-
"attention_bias": false,
|
7 |
-
"bos_token_id": 1,
|
8 |
-
"eos_token_id": 2,
|
9 |
-
"pad_token_id": 2,
|
10 |
-
"hidden_act": "silu",
|
11 |
-
"hidden_size": 4096,
|
12 |
-
"initializer_range": 0.02,
|
13 |
-
"intermediate_size": 14336,
|
14 |
-
"max_position_embeddings": 4096,
|
15 |
-
"model_type": "llama",
|
16 |
-
"num_attention_heads": 32,
|
17 |
-
"num_hidden_layers": 48,
|
18 |
-
"num_key_value_heads": 8,
|
19 |
-
"pretraining_tp": 1,
|
20 |
-
"rms_norm_eps": 1e-05,
|
21 |
-
"rope_scaling": null,
|
22 |
-
"rope_theta": 10000.0,
|
23 |
-
"tie_word_embeddings": false,
|
24 |
-
"torch_dtype": "float16",
|
25 |
-
"transformers_version": "4.35.0",
|
26 |
-
"use_cache": true,
|
27 |
-
"vocab_size": 32000
|
28 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/generation_config.json
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"bos_token_id": 1,
|
4 |
-
"eos_token_id": 2,
|
5 |
-
"pad_token_id": 2,
|
6 |
-
"transformers_version": "4.35.2",
|
7 |
-
"use_cache": false
|
8 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model-00001-of-00005.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a236ffb3d7450f3525058c4a84379dbf7ec20e0cdc1786b7454e355a8899a3e7
|
3 |
-
size 4943162240
|
|
|
|
|
|
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model-00002-of-00005.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f08fa4ecc0ad6d7d14cc00af9586991f1e9cb7d0c67edbf33c69bc6528f416f3
|
3 |
-
size 4999819232
|
|
|
|
|
|
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model-00003-of-00005.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6cfcaa469d97b4be11b1eeae0e8f3611f93299b4bb1b33578ac5e5fb866fb154
|
3 |
-
size 4915916080
|
|
|
|
|
|
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model-00004-of-00005.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:18bd0920761731ba8b43bdc568d13798f30e04377d94c781d1f926cdcccce172
|
3 |
-
size 4915916080
|
|
|
|
|
|
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model-00005-of-00005.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:46e67ee561f241973fcebca4e911c8515bcabda67e1f30fe2136ea95d400d22a
|
3 |
-
size 1688284744
|
|
|
|
|
|
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/model.safetensors.index.json
DELETED
@@ -1,442 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"metadata": {
|
3 |
-
"total_size": 21463048192
|
4 |
-
},
|
5 |
-
"weight_map": {
|
6 |
-
"lm_head.weight": "model-00005-of-00005.safetensors",
|
7 |
-
"model.embed_tokens.weight": "model-00001-of-00005.safetensors",
|
8 |
-
"model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
9 |
-
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
10 |
-
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
11 |
-
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
12 |
-
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
13 |
-
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
14 |
-
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
15 |
-
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
16 |
-
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
17 |
-
"model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
18 |
-
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
19 |
-
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
20 |
-
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
21 |
-
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
22 |
-
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
23 |
-
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
24 |
-
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
25 |
-
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
26 |
-
"model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
27 |
-
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
28 |
-
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
29 |
-
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
30 |
-
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
31 |
-
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
32 |
-
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
33 |
-
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
34 |
-
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
35 |
-
"model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
36 |
-
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
37 |
-
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
38 |
-
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
39 |
-
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
40 |
-
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
41 |
-
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
42 |
-
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
43 |
-
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
44 |
-
"model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
45 |
-
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
46 |
-
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
47 |
-
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
48 |
-
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
49 |
-
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
50 |
-
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
51 |
-
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
52 |
-
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
53 |
-
"model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
54 |
-
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
55 |
-
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
56 |
-
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
57 |
-
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
58 |
-
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
59 |
-
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
60 |
-
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
61 |
-
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
62 |
-
"model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
63 |
-
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
64 |
-
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
65 |
-
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
66 |
-
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
67 |
-
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
68 |
-
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
69 |
-
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
70 |
-
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
71 |
-
"model.layers.15.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
72 |
-
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
73 |
-
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
74 |
-
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
75 |
-
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
76 |
-
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
77 |
-
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
78 |
-
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
79 |
-
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
80 |
-
"model.layers.16.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
81 |
-
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
82 |
-
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
83 |
-
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
84 |
-
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
85 |
-
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
86 |
-
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
87 |
-
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
88 |
-
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
89 |
-
"model.layers.17.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
90 |
-
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
91 |
-
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
92 |
-
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
93 |
-
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
94 |
-
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
95 |
-
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
96 |
-
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
97 |
-
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
98 |
-
"model.layers.18.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
99 |
-
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
100 |
-
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
101 |
-
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
102 |
-
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
103 |
-
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
104 |
-
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
105 |
-
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
106 |
-
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
107 |
-
"model.layers.19.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
108 |
-
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
109 |
-
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
110 |
-
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
111 |
-
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
112 |
-
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
113 |
-
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
114 |
-
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
115 |
-
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
116 |
-
"model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
117 |
-
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
118 |
-
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
119 |
-
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
120 |
-
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
121 |
-
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
122 |
-
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
123 |
-
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
124 |
-
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
125 |
-
"model.layers.20.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
126 |
-
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
127 |
-
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
128 |
-
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
129 |
-
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
130 |
-
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
131 |
-
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
132 |
-
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
133 |
-
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
134 |
-
"model.layers.21.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
135 |
-
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
136 |
-
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
137 |
-
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
138 |
-
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
139 |
-
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
140 |
-
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
141 |
-
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
142 |
-
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
143 |
-
"model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
144 |
-
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
145 |
-
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
146 |
-
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
147 |
-
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
148 |
-
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
149 |
-
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
150 |
-
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
151 |
-
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
152 |
-
"model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
153 |
-
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
154 |
-
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
155 |
-
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
156 |
-
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
157 |
-
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
158 |
-
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
159 |
-
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
160 |
-
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
161 |
-
"model.layers.24.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
162 |
-
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
163 |
-
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
164 |
-
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
165 |
-
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
166 |
-
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
167 |
-
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
168 |
-
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
169 |
-
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
170 |
-
"model.layers.25.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
171 |
-
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
172 |
-
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
173 |
-
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
174 |
-
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
175 |
-
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
176 |
-
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
177 |
-
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
178 |
-
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
179 |
-
"model.layers.26.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
180 |
-
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
181 |
-
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
182 |
-
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
183 |
-
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
184 |
-
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
185 |
-
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
186 |
-
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
187 |
-
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
188 |
-
"model.layers.27.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
189 |
-
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
190 |
-
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
191 |
-
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
192 |
-
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
193 |
-
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
194 |
-
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
195 |
-
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
196 |
-
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
197 |
-
"model.layers.28.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
198 |
-
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
199 |
-
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
200 |
-
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
201 |
-
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
202 |
-
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
203 |
-
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
204 |
-
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
205 |
-
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
206 |
-
"model.layers.29.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
207 |
-
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
208 |
-
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
209 |
-
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
210 |
-
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
211 |
-
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
212 |
-
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
213 |
-
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
214 |
-
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
215 |
-
"model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
216 |
-
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
217 |
-
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
218 |
-
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
219 |
-
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
220 |
-
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
221 |
-
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
222 |
-
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
223 |
-
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
224 |
-
"model.layers.30.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
225 |
-
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
226 |
-
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
227 |
-
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
228 |
-
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
229 |
-
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
230 |
-
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
231 |
-
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
232 |
-
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
233 |
-
"model.layers.31.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
234 |
-
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
235 |
-
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
236 |
-
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
237 |
-
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
238 |
-
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
239 |
-
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
240 |
-
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
241 |
-
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
242 |
-
"model.layers.32.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
243 |
-
"model.layers.32.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
244 |
-
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
245 |
-
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
246 |
-
"model.layers.32.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
247 |
-
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
248 |
-
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
249 |
-
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
250 |
-
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
251 |
-
"model.layers.33.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
252 |
-
"model.layers.33.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
253 |
-
"model.layers.33.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
254 |
-
"model.layers.33.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
255 |
-
"model.layers.33.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
256 |
-
"model.layers.33.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
257 |
-
"model.layers.33.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
258 |
-
"model.layers.33.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
259 |
-
"model.layers.33.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
260 |
-
"model.layers.34.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
261 |
-
"model.layers.34.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
262 |
-
"model.layers.34.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
263 |
-
"model.layers.34.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
264 |
-
"model.layers.34.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
265 |
-
"model.layers.34.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
266 |
-
"model.layers.34.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
267 |
-
"model.layers.34.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
268 |
-
"model.layers.34.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
269 |
-
"model.layers.35.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
270 |
-
"model.layers.35.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
271 |
-
"model.layers.35.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
272 |
-
"model.layers.35.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
273 |
-
"model.layers.35.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
274 |
-
"model.layers.35.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
275 |
-
"model.layers.35.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
276 |
-
"model.layers.35.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
277 |
-
"model.layers.35.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
278 |
-
"model.layers.36.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
279 |
-
"model.layers.36.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
280 |
-
"model.layers.36.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
281 |
-
"model.layers.36.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
282 |
-
"model.layers.36.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
283 |
-
"model.layers.36.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
284 |
-
"model.layers.36.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
285 |
-
"model.layers.36.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
286 |
-
"model.layers.36.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
287 |
-
"model.layers.37.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
288 |
-
"model.layers.37.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
289 |
-
"model.layers.37.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
290 |
-
"model.layers.37.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
291 |
-
"model.layers.37.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
292 |
-
"model.layers.37.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
293 |
-
"model.layers.37.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
294 |
-
"model.layers.37.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
295 |
-
"model.layers.37.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
296 |
-
"model.layers.38.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
297 |
-
"model.layers.38.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
298 |
-
"model.layers.38.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
299 |
-
"model.layers.38.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
300 |
-
"model.layers.38.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
301 |
-
"model.layers.38.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
302 |
-
"model.layers.38.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
303 |
-
"model.layers.38.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
304 |
-
"model.layers.38.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
305 |
-
"model.layers.39.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
306 |
-
"model.layers.39.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
307 |
-
"model.layers.39.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
308 |
-
"model.layers.39.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
309 |
-
"model.layers.39.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
310 |
-
"model.layers.39.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
311 |
-
"model.layers.39.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
312 |
-
"model.layers.39.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
313 |
-
"model.layers.39.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
314 |
-
"model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
315 |
-
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
316 |
-
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
317 |
-
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
318 |
-
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
319 |
-
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
320 |
-
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
321 |
-
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
322 |
-
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
323 |
-
"model.layers.40.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
324 |
-
"model.layers.40.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
325 |
-
"model.layers.40.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
326 |
-
"model.layers.40.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
327 |
-
"model.layers.40.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
328 |
-
"model.layers.40.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
329 |
-
"model.layers.40.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
330 |
-
"model.layers.40.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
331 |
-
"model.layers.40.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
332 |
-
"model.layers.41.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
333 |
-
"model.layers.41.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
334 |
-
"model.layers.41.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
335 |
-
"model.layers.41.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
336 |
-
"model.layers.41.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
337 |
-
"model.layers.41.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
338 |
-
"model.layers.41.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
339 |
-
"model.layers.41.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
340 |
-
"model.layers.41.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
341 |
-
"model.layers.42.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
342 |
-
"model.layers.42.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
343 |
-
"model.layers.42.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
344 |
-
"model.layers.42.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
345 |
-
"model.layers.42.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
346 |
-
"model.layers.42.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
347 |
-
"model.layers.42.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
348 |
-
"model.layers.42.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
349 |
-
"model.layers.42.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
350 |
-
"model.layers.43.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
351 |
-
"model.layers.43.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
352 |
-
"model.layers.43.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
353 |
-
"model.layers.43.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
354 |
-
"model.layers.43.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
355 |
-
"model.layers.43.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
356 |
-
"model.layers.43.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
357 |
-
"model.layers.43.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
358 |
-
"model.layers.43.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
359 |
-
"model.layers.44.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
360 |
-
"model.layers.44.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
361 |
-
"model.layers.44.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
362 |
-
"model.layers.44.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
363 |
-
"model.layers.44.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
364 |
-
"model.layers.44.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
365 |
-
"model.layers.44.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
366 |
-
"model.layers.44.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
367 |
-
"model.layers.44.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
368 |
-
"model.layers.45.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
369 |
-
"model.layers.45.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
370 |
-
"model.layers.45.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
371 |
-
"model.layers.45.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
372 |
-
"model.layers.45.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
373 |
-
"model.layers.45.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
374 |
-
"model.layers.45.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
375 |
-
"model.layers.45.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
376 |
-
"model.layers.45.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
377 |
-
"model.layers.46.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
378 |
-
"model.layers.46.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
379 |
-
"model.layers.46.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
380 |
-
"model.layers.46.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
381 |
-
"model.layers.46.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
382 |
-
"model.layers.46.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
383 |
-
"model.layers.46.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
384 |
-
"model.layers.46.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
385 |
-
"model.layers.46.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
386 |
-
"model.layers.47.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
387 |
-
"model.layers.47.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
388 |
-
"model.layers.47.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
389 |
-
"model.layers.47.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
390 |
-
"model.layers.47.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
391 |
-
"model.layers.47.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
392 |
-
"model.layers.47.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
393 |
-
"model.layers.47.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
394 |
-
"model.layers.47.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
395 |
-
"model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
396 |
-
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
397 |
-
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
398 |
-
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
399 |
-
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
400 |
-
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
401 |
-
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
402 |
-
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
403 |
-
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
404 |
-
"model.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
405 |
-
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
406 |
-
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
407 |
-
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
408 |
-
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
409 |
-
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
410 |
-
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
411 |
-
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
412 |
-
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
413 |
-
"model.layers.7.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
414 |
-
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
415 |
-
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
416 |
-
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
417 |
-
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
418 |
-
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
419 |
-
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
420 |
-
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
421 |
-
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
422 |
-
"model.layers.8.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
423 |
-
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
424 |
-
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
425 |
-
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
426 |
-
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
427 |
-
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
428 |
-
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
429 |
-
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
430 |
-
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
431 |
-
"model.layers.9.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
432 |
-
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
433 |
-
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
434 |
-
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
435 |
-
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
436 |
-
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
437 |
-
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
438 |
-
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
439 |
-
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
440 |
-
"model.norm.weight": "model-00005-of-00005.safetensors"
|
441 |
-
}
|
442 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/solar_logo.png
DELETED
Binary file (77.1 kB)
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/tokenizer.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/tokenizer.model
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
-
size 493443
|
|
|
|
|
|
|
|
pretrained/upstage/SOLAR-10.7B-Instruct-v1.0/tokenizer_config.json
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"add_bos_token": true,
|
3 |
-
"add_eos_token": false,
|
4 |
-
"added_tokens_decoder": {
|
5 |
-
"0": {
|
6 |
-
"content": "<unk>",
|
7 |
-
"lstrip": false,
|
8 |
-
"normalized": false,
|
9 |
-
"rstrip": false,
|
10 |
-
"single_word": false,
|
11 |
-
"special": true
|
12 |
-
},
|
13 |
-
"1": {
|
14 |
-
"content": "<s>",
|
15 |
-
"lstrip": false,
|
16 |
-
"normalized": false,
|
17 |
-
"rstrip": false,
|
18 |
-
"single_word": false,
|
19 |
-
"special": true
|
20 |
-
},
|
21 |
-
"2": {
|
22 |
-
"content": "</s>",
|
23 |
-
"lstrip": false,
|
24 |
-
"normalized": false,
|
25 |
-
"rstrip": false,
|
26 |
-
"single_word": false,
|
27 |
-
"special": true
|
28 |
-
}
|
29 |
-
},
|
30 |
-
"additional_special_tokens": [],
|
31 |
-
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{% if message['content']%}{{'### System:\n' + message['content']+'\n\n'}}{% endif %}{% elif message['role'] == 'user' %}{{'### User:\n' + message['content']+'\n\n'}}{% elif message['role'] == 'assistant' %}{{'### Assistant:\n' + message['content']}}{% endif %}{% if loop.last and add_generation_prompt %}{{ '### Assistant:\n' }}{% endif %}{% endfor %}",
|
32 |
-
"bos_token": "<s>",
|
33 |
-
"clean_up_tokenization_spaces": false,
|
34 |
-
"eos_token": "</s>",
|
35 |
-
"legacy": true,
|
36 |
-
"model_max_length": 1000000000000000019884624838656,
|
37 |
-
"pad_token": "</s>",
|
38 |
-
"sp_model_kwargs": {},
|
39 |
-
"spaces_between_special_tokens": false,
|
40 |
-
"tokenizer_class": "LlamaTokenizer",
|
41 |
-
"unk_token": "<unk>",
|
42 |
-
"use_default_system_prompt": true
|
43 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|