File size: 1,656 Bytes
a5d87ef
414a377
337e73d
a5d87ef
414a377
 
 
337e73d
414a377
 
 
a5d87ef
 
414a377
a5d87ef
337e73d
414a377
a5d87ef
414a377
a5d87ef
414a377
 
a5d87ef
414a377
 
 
 
 
a5d87ef
414a377
a5d87ef
414a377
a5d87ef
 
414a377
a5d87ef
414a377
a5d87ef
414a377
 
 
 
 
a5d87ef
414a377
a5d87ef
 
 
414a377
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
base_model: Qwen/Qwen2-VL-2B-Instruct
datasets: leonardPKU/clevr_cogen_a_train
library_name: transformers
model_name: Qwen2-VL-2B-Instruct-SFT
tags:
- generated_from_trainer
- R1-V
- trl
- sft
licence: license
---

# Model Card for Qwen2-VL-2B-Instruct-SFT

This model is a fine-tuned version of [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) on the [leonardPKU/clevr_cogen_a_train](https://huggingface.co/datasets/leonardPKU/clevr_cogen_a_train) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="zhangcsv/Qwen2-VL-2B-Instruct-SFT", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

 


This model was trained with SFT.

### Framework versions

- TRL: 0.14.0
- Transformers: 4.50.0.dev0
- Pytorch: 2.5.1
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```