Upload deployment/api_server.py with huggingface_hub
Browse files- deployment/api_server.py +196 -0
deployment/api_server.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
AuraMind REST API Server
|
4 |
+
Production-ready API for AuraMind smartphone deployment
|
5 |
+
"""
|
6 |
+
|
7 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
9 |
+
from pydantic import BaseModel
|
10 |
+
from typing import Optional, List, Dict
|
11 |
+
import torch
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
13 |
+
import uvicorn
|
14 |
+
import logging
|
15 |
+
import time
|
16 |
+
from datetime import datetime
|
17 |
+
import os
|
18 |
+
|
19 |
+
# Configure logging
|
20 |
+
logging.basicConfig(level=logging.INFO)
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
# Request/Response models
|
24 |
+
class ChatRequest(BaseModel):
|
25 |
+
message: str
|
26 |
+
mode: str = "Assistant" # "Therapist" or "Assistant"
|
27 |
+
max_tokens: int = 200
|
28 |
+
temperature: float = 0.7
|
29 |
+
|
30 |
+
class ChatResponse(BaseModel):
|
31 |
+
response: str
|
32 |
+
mode: str
|
33 |
+
inference_time_ms: float
|
34 |
+
timestamp: str
|
35 |
+
|
36 |
+
class ModelInfo(BaseModel):
|
37 |
+
variant: str
|
38 |
+
memory_usage: str
|
39 |
+
inference_speed: str
|
40 |
+
status: str
|
41 |
+
|
42 |
+
# Initialize FastAPI app
|
43 |
+
app = FastAPI(
|
44 |
+
title="AuraMind API",
|
45 |
+
description="Smartphone-optimized dual-mode AI companion API",
|
46 |
+
version="1.0.0"
|
47 |
+
)
|
48 |
+
|
49 |
+
# Add CORS middleware
|
50 |
+
app.add_middleware(
|
51 |
+
CORSMiddleware,
|
52 |
+
allow_origins=["*"], # Configure appropriately for production
|
53 |
+
allow_credentials=True,
|
54 |
+
allow_methods=["*"],
|
55 |
+
allow_headers=["*"],
|
56 |
+
)
|
57 |
+
|
58 |
+
# Global model variables
|
59 |
+
tokenizer = None
|
60 |
+
model = None
|
61 |
+
model_variant = None
|
62 |
+
|
63 |
+
def load_model(variant: str = "270m"):
|
64 |
+
"""Load AuraMind model"""
|
65 |
+
global tokenizer, model, model_variant
|
66 |
+
|
67 |
+
try:
|
68 |
+
logger.info(f"Loading AuraMind {variant}...")
|
69 |
+
|
70 |
+
model_name = "zail-ai/Auramind"
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
72 |
+
model = AutoModelForCausalLM.from_pretrained(
|
73 |
+
model_name,
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
device_map="auto",
|
76 |
+
low_cpu_mem_usage=True
|
77 |
+
)
|
78 |
+
|
79 |
+
model.eval()
|
80 |
+
model_variant = variant
|
81 |
+
|
82 |
+
logger.info(f"✅ AuraMind {variant} loaded successfully")
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
logger.error(f"Failed to load model: {e}")
|
86 |
+
raise
|
87 |
+
|
88 |
+
@app.on_event("startup")
|
89 |
+
async def startup_event():
|
90 |
+
"""Initialize model on startup"""
|
91 |
+
variant = os.getenv("MODEL_VARIANT", "270m")
|
92 |
+
load_model(variant)
|
93 |
+
|
94 |
+
@app.get("/health")
|
95 |
+
async def health_check():
|
96 |
+
"""Health check endpoint"""
|
97 |
+
return {
|
98 |
+
"status": "healthy",
|
99 |
+
"model_loaded": model is not None,
|
100 |
+
"variant": model_variant,
|
101 |
+
"timestamp": datetime.now().isoformat()
|
102 |
+
}
|
103 |
+
|
104 |
+
@app.get("/model/info", response_model=ModelInfo)
|
105 |
+
async def get_model_info():
|
106 |
+
"""Get model information"""
|
107 |
+
if model is None:
|
108 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
109 |
+
|
110 |
+
variant_configs = {
|
111 |
+
"270m": {"memory": "~680MB RAM", "speed": "100-300ms"},
|
112 |
+
"180m": {"memory": "~450MB RAM", "speed": "80-200ms"},
|
113 |
+
"90m": {"memory": "~225MB RAM", "speed": "50-150ms"}
|
114 |
+
}
|
115 |
+
|
116 |
+
config = variant_configs.get(model_variant, {"memory": "Unknown", "speed": "Unknown"})
|
117 |
+
|
118 |
+
return ModelInfo(
|
119 |
+
variant=model_variant,
|
120 |
+
memory_usage=config["memory"],
|
121 |
+
inference_speed=config["speed"],
|
122 |
+
status="ready"
|
123 |
+
)
|
124 |
+
|
125 |
+
@app.post("/chat", response_model=ChatResponse)
|
126 |
+
async def chat(request: ChatRequest):
|
127 |
+
"""Generate chat response"""
|
128 |
+
if model is None or tokenizer is None:
|
129 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
130 |
+
|
131 |
+
if request.mode not in ["Therapist", "Assistant"]:
|
132 |
+
raise HTTPException(status_code=400, detail="Mode must be 'Therapist' or 'Assistant'")
|
133 |
+
|
134 |
+
try:
|
135 |
+
start_time = time.time()
|
136 |
+
|
137 |
+
# Format prompt
|
138 |
+
prompt = f"<|start_of_turn|>user\n[{request.mode} Mode] {request.message}<|end_of_turn|>\n<|start_of_turn|>model\n"
|
139 |
+
|
140 |
+
# Tokenize
|
141 |
+
inputs = tokenizer(
|
142 |
+
prompt,
|
143 |
+
return_tensors="pt",
|
144 |
+
truncation=True,
|
145 |
+
max_length=512
|
146 |
+
)
|
147 |
+
|
148 |
+
# Generate
|
149 |
+
with torch.no_grad():
|
150 |
+
outputs = model.generate(
|
151 |
+
**inputs,
|
152 |
+
max_new_tokens=request.max_tokens,
|
153 |
+
temperature=request.temperature,
|
154 |
+
do_sample=True,
|
155 |
+
top_p=0.9,
|
156 |
+
repetition_penalty=1.1,
|
157 |
+
pad_token_id=tokenizer.eos_token_id
|
158 |
+
)
|
159 |
+
|
160 |
+
# Decode response
|
161 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
162 |
+
response = full_response.split("<|start_of_turn|>model\n")[-1].strip()
|
163 |
+
|
164 |
+
inference_time = (time.time() - start_time) * 1000
|
165 |
+
|
166 |
+
return ChatResponse(
|
167 |
+
response=response,
|
168 |
+
mode=request.mode,
|
169 |
+
inference_time_ms=round(inference_time, 2),
|
170 |
+
timestamp=datetime.now().isoformat()
|
171 |
+
)
|
172 |
+
|
173 |
+
except Exception as e:
|
174 |
+
logger.error(f"Error generating response: {e}")
|
175 |
+
raise HTTPException(status_code=500, detail="Failed to generate response")
|
176 |
+
|
177 |
+
@app.post("/chat/batch")
|
178 |
+
async def chat_batch(requests: List[ChatRequest]):
|
179 |
+
"""Process multiple chat requests"""
|
180 |
+
if len(requests) > 10: # Limit batch size
|
181 |
+
raise HTTPException(status_code=400, detail="Batch size limited to 10 requests")
|
182 |
+
|
183 |
+
responses = []
|
184 |
+
for req in requests:
|
185 |
+
response = await chat(req)
|
186 |
+
responses.append(response)
|
187 |
+
|
188 |
+
return {"responses": responses}
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
uvicorn.run(
|
192 |
+
app,
|
193 |
+
host="0.0.0.0",
|
194 |
+
port=int(os.getenv("PORT", 8000)),
|
195 |
+
workers=1 # Single worker for model consistency
|
196 |
+
)
|