Update README.md (#1)
Browse files- Update README.md (04a4bb526ab265606320941d566916df84b32b1f)
Co-authored-by: Parteek <keetrap@users.noreply.huggingface.co>
README.md
CHANGED
@@ -1,7 +1,83 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
library_name: transformers
|
|
|
4 |
pipeline_tag: depth-estimation
|
5 |
-
|
6 |
-
|
|
|
|
|
7 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
pipeline_tag: depth-estimation
|
5 |
+
arxiv: <2502.19204>
|
6 |
+
tags:
|
7 |
+
- distill-any-depth
|
8 |
+
- vision
|
9 |
---
|
10 |
+
# Distill Any Depth Small - Transformers Version
|
11 |
+
|
12 |
+
## Introduction
|
13 |
+
We present Distill-Any-Depth, a new SOTA monocular depth estimation model trained with our proposed knowledge distillation algorithms. It was introduced in the paper [Distill Any Depth: Distillation Creates a Stronger Monocular Depth Estimator](http://arxiv.org/abs/2502.19204).
|
14 |
+
|
15 |
+
This model checkpoint is compatible with the transformers library.
|
16 |
+
|
17 |
+
[Online demo](https://huggingface.co/spaces/xingyang1/Distill-Any-Depth).
|
18 |
+
|
19 |
+
### How to use
|
20 |
+
|
21 |
+
Here is how to use this model to perform zero-shot depth estimation:
|
22 |
+
|
23 |
+
```python
|
24 |
+
from transformers import pipeline
|
25 |
+
from PIL import Image
|
26 |
+
import requests
|
27 |
+
# load pipe
|
28 |
+
pipe = pipeline(task="depth-estimation", model="xingyang1/Distill-Any-Depth-Small-hf")
|
29 |
+
# load image
|
30 |
+
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
31 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
32 |
+
# inference
|
33 |
+
depth = pipe(image)["depth"]
|
34 |
+
```
|
35 |
+
|
36 |
+
Alternatively, you can use the model and processor classes:
|
37 |
+
|
38 |
+
```python
|
39 |
+
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
40 |
+
import torch
|
41 |
+
import numpy as np
|
42 |
+
from PIL import Image
|
43 |
+
import requests
|
44 |
+
|
45 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
46 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
47 |
+
|
48 |
+
image_processor = AutoImageProcessor.from_pretrained("xingyang1/Distill-Any-Depth-Small-hf")
|
49 |
+
model = AutoModelForDepthEstimation.from_pretrained("xingyang1/Distill-Any-Depth-Small-hf")
|
50 |
+
|
51 |
+
# prepare image for the model
|
52 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
outputs = model(**inputs)
|
56 |
+
|
57 |
+
# interpolate to original size and visualize the prediction
|
58 |
+
post_processed_output = image_processor.post_process_depth_estimation(
|
59 |
+
outputs,
|
60 |
+
target_sizes=[(image.height, image.width)],
|
61 |
+
)
|
62 |
+
|
63 |
+
predicted_depth = post_processed_output[0]["predicted_depth"]
|
64 |
+
depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
|
65 |
+
depth = depth.detach().cpu().numpy() * 255
|
66 |
+
depth = Image.fromarray(depth.astype("uint8"))
|
67 |
+
)
|
68 |
+
```
|
69 |
+
|
70 |
+
|
71 |
+
If you find this project useful, please consider citing:
|
72 |
+
|
73 |
+
```bibtex
|
74 |
+
@article{he2025distill,
|
75 |
+
title = {Distill Any Depth: Distillation Creates a Stronger Monocular Depth Estimator},
|
76 |
+
author = {Xiankang He and Dongyan Guo and Hongji Li and Ruibo Li and Ying Cui and Chi Zhang},
|
77 |
+
year = {2025},
|
78 |
+
journal = {arXiv preprint arXiv: 2502.19204}
|
79 |
+
}
|
80 |
+
```
|
81 |
+
|
82 |
+
## Model Card Author
|
83 |
+
[Parteek Kamboj](https://huggingface.co/keetrap)
|