File size: 5,517 Bytes
b575114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
language:
  - en
license: mit
library_name: transformers
tags:
  - audio
  - emotion-classification
  - arousal-valence
  - speech
  - pytorch
  - custom
pipeline_tag: audio-classification
datasets:
  - TESS
  - CREMA-D
metrics:
  - accuracy
  - mse
model-index:
  - name: emotion-av-model
    results:
      - task:
          type: audio-classification
          name: Audio Emotion Classification
        dataset:
          type: tess-crema-d
          name: Combined TESS and CREMA-D
        metrics:
          - type: accuracy
            value: 0.96
            name: Test Accuracy
          - type: mse
            value: 0.094
            name: Arousal-Valence MSE
---

# Audio Emotion Classification with Arousal-Valence Prediction

This model performs audio emotion classification while simultaneously predicting continuous arousal and valence values. It combines multiple audio features (Wav2Vec2, MFCC, and prosodic features) to achieve robust emotion recognition.

## Model Description

- **Task**: Audio emotion classification with arousal-valence prediction
- **Architecture**: Dual-branch neural network (emotion + arousal-valence)
- **Features**: Wav2Vec2 (768) + MFCC (13) + Prosodic (6) = 787 dimensions
- **Emotions**: angry, disgust, fear, happy, neutral, sad
- **Performance**: ~96% accuracy on test set, MSE ~0.094 for arousal-valence

## Quick Start

### Using the Pipeline (Recommended)

```python
from pipeline_emotion_av import pipeline

# Create pipeline
emotion_pipeline = pipeline(
    "audio-emotion-classification",
    model="pricklypearhealth/emotion-av-model"
)

# Process audio
result = emotion_pipeline("path/to/audio.wav", return_all_scores=True)
print(result)
```

### Direct Model Usage

```python
from modeling_emotion_av import EmotionAVModel
from feature_extraction_emotion_av import EmotionAVFeatureExtractor

# Load model and feature extractor
model = EmotionAVModel.from_pretrained("pricklypearhealth/emotion-av-model")
feature_extractor = EmotionAVFeatureExtractor.from_pretrained("pricklypearhealth/emotion-av-model")

# Process audio file
features = feature_extractor.from_file("path/to/audio.wav", return_tensors="pt")
result = model.predict_emotion(features["input_features"])

print(f"Emotion: {result['emotion']}")
print(f"Confidence: {result['confidence']:.4f}")
print(f"Arousal: {result['arousal']:.4f}")
print(f"Valence: {result['valence']:.4f}")
```

## Features

### Multi-Modal Feature Extraction

- **Wav2Vec2**: Pre-trained transformer features from facebook/wav2vec2-base-960h
- **MFCC**: 13 Mel-frequency cepstral coefficients
- **Prosodic**: Pitch (mean/std), energy, zero-crossing rate, jitter, shimmer

### Dual Prediction Output

- **Discrete Emotions**: 6-class classification (angry, disgust, fear, happy, neutral, sad)
- **Continuous Values**: Arousal (-1 to +1) and Valence (-1 to +1) scores

### Flexible Input Formats

- Audio file paths (WAV, MP3, etc.)
- Raw audio arrays (numpy)
- List of audio samples
- Batch processing support

## Training Details

- **Datasets**: TESS + CREMA-D (balanced via oversampling)
- **Features**: Wav2Vec2 + MFCC + Prosodic (787 total dimensions)
- **Architecture**: Dual-branch neural network with BatchNorm and Dropout
- **Training**: 30 epochs with early stopping, ReduceLROnPlateau scheduler

## Model Architecture

```
Input Audio (16kHz)
    ↓
Feature Extraction:
β”œβ”€β”€ Wav2Vec2 (768 features)
β”œβ”€β”€ MFCC (13 features)
└── Prosodic (6 features)
    ↓
Combined Features (787 dims)
    ↓
Dual Branch Network:
β”œβ”€β”€ Emotion Branch β†’ 6-class Classification
└── AV Branch β†’ 2D Regression (Arousal, Valence)
```

## API Usage

### Inference API

This model supports the Hugging Face Inference API. You can use it directly:

```python
import requests
import base64

# Encode audio file
with open("audio.wav", "rb") as f:
    audio_bytes = f.read()
    audio_b64 = base64.b64encode(audio_bytes).decode()

# Make API request
response = requests.post(
    "https://api-inference.huggingface.co/models/pricklypearhealth/emotion-av-model",
    headers={"Authorization": "Bearer YOUR_HF_TOKEN"},
    json={"inputs": audio_b64}
)

result = response.json()
print(result)
```

### Expected Response Format

```json
[
  {
    "label": "happy",
    "score": 0.8542,
    "arousal": 0.7234,
    "valence": 0.9123,
    "all_scores": [
      { "label": "happy", "score": 0.8542 },
      { "label": "neutral", "score": 0.0892 },
      { "label": "sad", "score": 0.0456 }
    ]
  }
]
```

### Using Inference Endpoints

For production use, you can deploy this model on Hugging Face Inference Endpoints:

```python
import requests
import base64

# Encode audio file
with open("audio.wav", "rb") as f:
    audio_bytes = f.read()
    audio_b64 = base64.b64encode(audio_bytes).decode()

# Make request to your Inference Endpoint
response = requests.post(
    "https://YOUR_ENDPOINT_URL.endpoints.huggingface.cloud",
    headers={
        "Authorization": "Bearer YOUR_HF_TOKEN",
        "Content-Type": "application/json",
    },
    json={
        "inputs": audio_b64,
        "parameters": {
            "return_all_scores": True,
            "sampling_rate": 16000
        }
    }
)

result = response.json()
print(result)
```

## Citation

If you use this model, please cite:

```bibtex
@misc{emotion-av-model,
  title={Audio Emotion Classification with Arousal-Valence Prediction},
  author={Your Name},
  year={2024},
  url={https://huggingface.co/pricklypearhealth/emotion-av-model}
}
```