Safetensors
English
qwen2
File size: 9,856 Bytes
1680393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import argparse
import re
import torch
import uvicorn
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from transformers import AutoTokenizer
import asyncio
from collections import defaultdict
import json
from openai import AsyncOpenAI
import time
import math
# Set OpenAI's API key and API base to use vLLM's API server.

# for free-form including multiple-choice
PROMPT_critic_updated = '''
Given a problem, determine whether the final answer in the provided (incomplete) solution process matches the reference answer.  
The reference answer may be one single option character (e.g., A, B, C, D), a numerical value, an expression, or a list of answers if multiple questions are involved.  
**The reference answer may be in Chinese or another language, but your evaluation should be language-agnostic.**  

Your task:  
- Compare the final output of the solution process with the reference answer.  
- If they **match exactly**, output **YES**.  
- If they **do not match**, output **NO**.  
- If the solution process is unclear, incomplete, or ambiguous, assume it is incorrect and output **NO**.  

Your output must be strictly **'YES'** or **'NO'**, with no additional words, punctuation, or explanation.  

---

**Question:**  
{question}  

**Solution Process (Final Step Only):**  
{response}  

**Reference Answer:**  
{reference}  

**Output:**  
'''



def parse_im_sections(text):
    # Match all sections between <|im_start|> and <|im_end|>
    sections = re.findall(r"<\|im_start\|>(.*?)<\|im_end\|>", text, re.DOTALL)
    parsed = {}
    for section in sections:
        try:
            # Split the role and content
            role, content = section.split("\n", 1)
            parsed[role.strip()] = content.strip()
        except ValueError:
            print(f"Skipping malformed section: {section}")
    return parsed

def extract_last_non_empty_line(text, role="assistant"):
    # Extract the last non-empty line from assistant's content
    pattern = fr"<\|im_start\|>{role}(.*?)(?:<\|im_start\|>|<\|endoftext\|>|<\|eot_id\|>|$)"
    match = re.search(pattern, text, re.DOTALL)
    if match:
        content = match.group(1).strip()
        # Get the last non-empty line
        lines = [line for line in content.splitlines() if line.strip()]
        if lines:
            last_non_empty_line=lines[-1]
        else:
            return ""
        return last_non_empty_line
    return ""


def reward_normalization(rewards):
    if len(rewards) == 1:
        return [0.0]
    rewards = torch.tensor(rewards, dtype=torch.float64)
    if rewards.std() == 0:
        normalized_rewards = torch.zeros_like(rewards)
    else:
        normalized_rewards = (rewards - rewards.mean()) / rewards.std()

    return normalized_rewards.tolist()


def strip_sequence(text, pad_token, eos_token):
    pad_token_escaped = re.escape(pad_token)
    eos_token_escaped = re.escape(eos_token)

    pattern = f"^({eos_token_escaped}|{pad_token_escaped})+"
    text = re.sub(pattern, "", text)

    pattern = f"({eos_token_escaped}|{pad_token_escaped})+$"
    text = re.sub(pattern, "", text)
    return text


def group_reward_normalization(rewards, n_samples_per_prompt=4):
    rewards = torch.tensor(rewards, dtype=torch.float64)
    rewards = rewards.reshape(-1, n_samples_per_prompt)

    mean = rewards.mean(dim=-1, keepdim=True)
    std = rewards.std(dim=-1, keepdim=True)

    normalized_rewards = torch.where(std == 0, torch.zeros_like(rewards), (rewards - mean) / std)

    return normalized_rewards.flatten().tolist()


class RewardModelProxy:
    def __init__(self, args):
        self.tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path, trust_remote_code=True)
        self.normalize_reward = args.normalize_reward
        self.group_normalize_reward = args.group_normalize_reward
        self.qa_dict = defaultdict(str)
        self.load_dict(args.answer_path)
        self.temperature = 0
        self.stop=[self.tokenizer.eos_token,"<|im_end|>"]
        self.max_tokens=1
        self.prob_reward=args.prob_reward
        self.log_path=args.log_path
        self.vllm_model=args.vllm_model

    def load_dict(self, path):
        # Initialize self.qa_dict
        with open(path, "r", encoding="utf-8") as file:
            data = json.load(file)
            for unit in data:
                question = unit["query"][1]["content"]
                label = unit["label"]
                self.qa_dict[question] = label

        if self.qa_dict:
            sample_question, sample_label = next(iter(self.qa_dict.items()))
            print("Sample Question:", sample_question)
            print("Sample Label:", sample_label)
        else:
            print("qa_dict is empty.")


    async def process_sample(self,query):
        query = strip_sequence(query, self.tokenizer.pad_token, self.tokenizer.eos_token)+ self.tokenizer.eos_token
        question = parse_im_sections(query)["user"]
        answer = extract_last_non_empty_line(query, role="assistant")
        if not answer.strip():
            return 0.0
        else:
            prompt_question = PROMPT_critic_updated.format(question=question, reference=self.qa_dict[question], response=answer)
            return await self.get_reward_from_vllm(prompt_question)

    async def get_reward_from_vllm(self, query):
        """Retrieve model judgment reward (with probability analysis)"""
        max_retries = 10
        delay=10
        for attempt in range(max_retries):
            try:
                response = await client.chat.completions.create(
                    model=self.vllm_model,
                    messages=[
                        {"role": "system", "content": "You are a helpful assistant."},
                        {"role": "user", "content": query},
                    ],
                    temperature=self.temperature,
                    max_tokens=self.max_tokens,
                    stop=self.stop,
                    logprobs=True,
                    top_logprobs=10  # Get top 10 token probabilities
                )
                return self.calculate_reward_from_logprobs(response)
                
            except Exception as e:
                print(f"Attempt {attempt+1} failed: {str(e)}, retrying in {delay} seconds...")
                await asyncio.sleep(delay)
        print(f"Failed after {max_retries} retries, query content: {query[:200]}...")
        return 0.0  # Return baseline value on failure

    def calculate_reward_from_logprobs(self, response):
        """Calculate normalized reward based on log probabilities"""
        # Extract probabilities of all possible tokens
        logprobs = response.choices[0].logprobs.content[0].top_logprobs
        token_probs = {token.token: math.exp(token.logprob) for token in logprobs}
        
        # Combine probabilities of YES/NO (case-insensitive)
        yes_prob = sum(prob for token, prob in token_probs.items() if token.lower().strip()=="yes")
        no_prob = sum(prob for token, prob in token_probs.items()if token.lower().strip()=="no")
        total = yes_prob + no_prob
        if total == 0:
            return 0.0  # Return baseline value when no valid judgment
        if self.prob_reward:
            print(yes_prob/total)
            return yes_prob / total  # Normalized probability
        return 1.0 if yes_prob > no_prob else 0.0  # Hard judgment mode

    async def get_reward(self, queries):
        print("Processing queries[0]: {}".format(queries[0]))
        tasks = [self.process_sample(query) for query in queries]
        scores = await asyncio.gather(*tasks)
        print("Generated scores: {}".format(scores))
        if self.log_path:
            with open(self.log_path, 'a', encoding='utf-8') as f:
                unit = {
                    "query_list": queries if isinstance(queries, list) else [],
                    "hard_score_list": scores if isinstance(scores, list) else []
                }
                json.dump(unit, f, ensure_ascii=False)
                f.write('\n')
        if self.normalize_reward:
            return reward_normalization(scores)
        elif self.group_normalize_reward:
            return group_reward_normalization(scores)
        else:
            return scores


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # Reward Model
    parser.add_argument("--tokenizer_path", type=str, default=None)
    parser.add_argument("--answer_path", type=str, default=None)
    parser.add_argument("--prob_reward", action="store_true", default=False)
    parser.add_argument("--normalize_reward", action="store_true", default=False, help="Enable Reward Normazation")
    parser.add_argument("--group_normalize_reward", action="store_true", default=False, help="Enable Group Reward Normazation")
    parser.add_argument("--port", type=int, default=5000, help="Port number for the server")
    parser.add_argument("--host", type=str, default="0.0.0.0", help="IP for the server")
    parser.add_argument("--log_path", type=str, default=None)
    parser.add_argument("--vllm_url", type=str, default=None)
    parser.add_argument("--vllm_model", type=str, default=None)
    args = parser.parse_args()
    openai_api_key = "EMPTY"
    openai_api_base = args.vllm_url

    client = AsyncOpenAI(
        api_key=openai_api_key,
        base_url=openai_api_base,
    )

    # Server setup
    reward_model = RewardModelProxy(args)
    app = FastAPI()


    @app.post("/get_reward")
    async def get_reward(request: Request):
        data = await request.json()
        queries = data.get("query")
        rewards = await reward_model.get_reward(queries)
        result = {"rewards": rewards}
        print(f"Sent JSON response: {result}")
        return JSONResponse(result)

    uvicorn.run(app, host=args.host, port=args.port, log_level="info")