File size: 9,856 Bytes
1680393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import argparse
import re
import torch
import uvicorn
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from transformers import AutoTokenizer
import asyncio
from collections import defaultdict
import json
from openai import AsyncOpenAI
import time
import math
# Set OpenAI's API key and API base to use vLLM's API server.
# for free-form including multiple-choice
PROMPT_critic_updated = '''
Given a problem, determine whether the final answer in the provided (incomplete) solution process matches the reference answer.
The reference answer may be one single option character (e.g., A, B, C, D), a numerical value, an expression, or a list of answers if multiple questions are involved.
**The reference answer may be in Chinese or another language, but your evaluation should be language-agnostic.**
Your task:
- Compare the final output of the solution process with the reference answer.
- If they **match exactly**, output **YES**.
- If they **do not match**, output **NO**.
- If the solution process is unclear, incomplete, or ambiguous, assume it is incorrect and output **NO**.
Your output must be strictly **'YES'** or **'NO'**, with no additional words, punctuation, or explanation.
---
**Question:**
{question}
**Solution Process (Final Step Only):**
{response}
**Reference Answer:**
{reference}
**Output:**
'''
def parse_im_sections(text):
# Match all sections between <|im_start|> and <|im_end|>
sections = re.findall(r"<\|im_start\|>(.*?)<\|im_end\|>", text, re.DOTALL)
parsed = {}
for section in sections:
try:
# Split the role and content
role, content = section.split("\n", 1)
parsed[role.strip()] = content.strip()
except ValueError:
print(f"Skipping malformed section: {section}")
return parsed
def extract_last_non_empty_line(text, role="assistant"):
# Extract the last non-empty line from assistant's content
pattern = fr"<\|im_start\|>{role}(.*?)(?:<\|im_start\|>|<\|endoftext\|>|<\|eot_id\|>|$)"
match = re.search(pattern, text, re.DOTALL)
if match:
content = match.group(1).strip()
# Get the last non-empty line
lines = [line for line in content.splitlines() if line.strip()]
if lines:
last_non_empty_line=lines[-1]
else:
return ""
return last_non_empty_line
return ""
def reward_normalization(rewards):
if len(rewards) == 1:
return [0.0]
rewards = torch.tensor(rewards, dtype=torch.float64)
if rewards.std() == 0:
normalized_rewards = torch.zeros_like(rewards)
else:
normalized_rewards = (rewards - rewards.mean()) / rewards.std()
return normalized_rewards.tolist()
def strip_sequence(text, pad_token, eos_token):
pad_token_escaped = re.escape(pad_token)
eos_token_escaped = re.escape(eos_token)
pattern = f"^({eos_token_escaped}|{pad_token_escaped})+"
text = re.sub(pattern, "", text)
pattern = f"({eos_token_escaped}|{pad_token_escaped})+$"
text = re.sub(pattern, "", text)
return text
def group_reward_normalization(rewards, n_samples_per_prompt=4):
rewards = torch.tensor(rewards, dtype=torch.float64)
rewards = rewards.reshape(-1, n_samples_per_prompt)
mean = rewards.mean(dim=-1, keepdim=True)
std = rewards.std(dim=-1, keepdim=True)
normalized_rewards = torch.where(std == 0, torch.zeros_like(rewards), (rewards - mean) / std)
return normalized_rewards.flatten().tolist()
class RewardModelProxy:
def __init__(self, args):
self.tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path, trust_remote_code=True)
self.normalize_reward = args.normalize_reward
self.group_normalize_reward = args.group_normalize_reward
self.qa_dict = defaultdict(str)
self.load_dict(args.answer_path)
self.temperature = 0
self.stop=[self.tokenizer.eos_token,"<|im_end|>"]
self.max_tokens=1
self.prob_reward=args.prob_reward
self.log_path=args.log_path
self.vllm_model=args.vllm_model
def load_dict(self, path):
# Initialize self.qa_dict
with open(path, "r", encoding="utf-8") as file:
data = json.load(file)
for unit in data:
question = unit["query"][1]["content"]
label = unit["label"]
self.qa_dict[question] = label
if self.qa_dict:
sample_question, sample_label = next(iter(self.qa_dict.items()))
print("Sample Question:", sample_question)
print("Sample Label:", sample_label)
else:
print("qa_dict is empty.")
async def process_sample(self,query):
query = strip_sequence(query, self.tokenizer.pad_token, self.tokenizer.eos_token)+ self.tokenizer.eos_token
question = parse_im_sections(query)["user"]
answer = extract_last_non_empty_line(query, role="assistant")
if not answer.strip():
return 0.0
else:
prompt_question = PROMPT_critic_updated.format(question=question, reference=self.qa_dict[question], response=answer)
return await self.get_reward_from_vllm(prompt_question)
async def get_reward_from_vllm(self, query):
"""Retrieve model judgment reward (with probability analysis)"""
max_retries = 10
delay=10
for attempt in range(max_retries):
try:
response = await client.chat.completions.create(
model=self.vllm_model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": query},
],
temperature=self.temperature,
max_tokens=self.max_tokens,
stop=self.stop,
logprobs=True,
top_logprobs=10 # Get top 10 token probabilities
)
return self.calculate_reward_from_logprobs(response)
except Exception as e:
print(f"Attempt {attempt+1} failed: {str(e)}, retrying in {delay} seconds...")
await asyncio.sleep(delay)
print(f"Failed after {max_retries} retries, query content: {query[:200]}...")
return 0.0 # Return baseline value on failure
def calculate_reward_from_logprobs(self, response):
"""Calculate normalized reward based on log probabilities"""
# Extract probabilities of all possible tokens
logprobs = response.choices[0].logprobs.content[0].top_logprobs
token_probs = {token.token: math.exp(token.logprob) for token in logprobs}
# Combine probabilities of YES/NO (case-insensitive)
yes_prob = sum(prob for token, prob in token_probs.items() if token.lower().strip()=="yes")
no_prob = sum(prob for token, prob in token_probs.items()if token.lower().strip()=="no")
total = yes_prob + no_prob
if total == 0:
return 0.0 # Return baseline value when no valid judgment
if self.prob_reward:
print(yes_prob/total)
return yes_prob / total # Normalized probability
return 1.0 if yes_prob > no_prob else 0.0 # Hard judgment mode
async def get_reward(self, queries):
print("Processing queries[0]: {}".format(queries[0]))
tasks = [self.process_sample(query) for query in queries]
scores = await asyncio.gather(*tasks)
print("Generated scores: {}".format(scores))
if self.log_path:
with open(self.log_path, 'a', encoding='utf-8') as f:
unit = {
"query_list": queries if isinstance(queries, list) else [],
"hard_score_list": scores if isinstance(scores, list) else []
}
json.dump(unit, f, ensure_ascii=False)
f.write('\n')
if self.normalize_reward:
return reward_normalization(scores)
elif self.group_normalize_reward:
return group_reward_normalization(scores)
else:
return scores
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Reward Model
parser.add_argument("--tokenizer_path", type=str, default=None)
parser.add_argument("--answer_path", type=str, default=None)
parser.add_argument("--prob_reward", action="store_true", default=False)
parser.add_argument("--normalize_reward", action="store_true", default=False, help="Enable Reward Normazation")
parser.add_argument("--group_normalize_reward", action="store_true", default=False, help="Enable Group Reward Normazation")
parser.add_argument("--port", type=int, default=5000, help="Port number for the server")
parser.add_argument("--host", type=str, default="0.0.0.0", help="IP for the server")
parser.add_argument("--log_path", type=str, default=None)
parser.add_argument("--vllm_url", type=str, default=None)
parser.add_argument("--vllm_model", type=str, default=None)
args = parser.parse_args()
openai_api_key = "EMPTY"
openai_api_base = args.vllm_url
client = AsyncOpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
# Server setup
reward_model = RewardModelProxy(args)
app = FastAPI()
@app.post("/get_reward")
async def get_reward(request: Request):
data = await request.json()
queries = data.get("query")
rewards = await reward_model.get_reward(queries)
result = {"rewards": rewards}
print(f"Sent JSON response: {result}")
return JSONResponse(result)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|