File size: 34,810 Bytes
f55a22f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
---
base_model: nomic-ai/nomic-embed-text-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Chevron aims to support a diverse and inclusive supply chain that
    reflects the communities where they operate, believing that a diverse supply chain
    contributes to their success and growth.
  sentences:
  - What was the renewal rate for Costco memberships in the U.S. and Canada at the
    end of 2023?
  - What is Chevron's approach towards maintaining a diverse and inclusive supply
    chain?
  - What percentage growth did LinkedIn revenue experience?
- source_sentence: Visa Direct is part of Visa’s strategy beyond C2B payments and
    helps facilitate the delivery of funds to eligible cards, deposit accounts and
    digital wallets across more than 190 countries and territories. Visa Direct supports
    multiple use cases, such as P2P payments and account-to-account transfers, business
    and government payouts to individuals or small businesses, merchant settlements
    and refunds.
  sentences:
  - What type of situations will the company record a liability for legal proceedings?
  - What is the purpose of Visa Direct?
  - What benefits does Airbnb's AirCover for guests offer?
- source_sentence: As of December 31, 2023, we had $267 million of total unrecognized
    compensation cost related to nonvested stock-based compensation awards granted
    under our plans.
  sentences:
  - How much total unrecognized compensation cost related to nonvested stock-based
    compensation awards was reported as of December 31, 2023?
  - What changes are planned for the company's reporting metrics starting in fiscal
    year 202es and how does this affect the treatment of paused subscriptions?
  - How much does HP expect to pay for benefit claims for its post-retirement benefit
    plans in fiscal year 2024?
- source_sentence: Discrete tax items resulted in a (benefit) provision for income
    taxes of $(18.1) million and $(11.9) million for the years ended December 31,
    2023 and 2022, respectively.
  sentences:
  - What was the total cost of TNT Express's business realignment through 2023?
  - What is the purpose of adding research and development expenses and general and
    administrative expenses to the loss from operations when calculating the contribution
    margin?
  - What impact did discrete tax items have on the tax provision in 2023 compared
    to 2022?
- source_sentence: 'The company may issue debt or equity securities occasionally to
    provide additional liquidity or pursue opportunities to enhance its long-term
    competitive position while maintaining a strong balance sheet. '
  sentences:
  - What might the company do to increase liquidity or pursue long-term competitive
    advantages while managing a strong balance sheet?
  - What types of technologies does the Mortgage Technology segment employ to enhance
    operational efficiency?
  - Which section of a financial document covers Financial Statements and Supplementary
    Data?
model-index:
- name: Nomic Embed 1.5 Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6928571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8228571428571428
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.87
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9071428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6928571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2742857142857143
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.174
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0907142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6928571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8228571428571428
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.87
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9071428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8029973671837228
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7692715419501133
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7724352164684344
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6914285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8271428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.87
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9085714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6914285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2757142857142857
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.174
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09085714285714284
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6914285714285714
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8271428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.87
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9085714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8029523922190992
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7687732426303853
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7717841390041892
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6871428571428572
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8285714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8728571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8985714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6871428571428572
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27619047619047615
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17457142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08985714285714284
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6871428571428572
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8285714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8728571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8985714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7983704009707536
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7655901360544215
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7693376855880492
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6671428571428571
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8185714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8557142857142858
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8957142857142857
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6671428571428571
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27285714285714285
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17114285714285712
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08957142857142855
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6671428571428571
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8185714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8557142857142858
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8957142857142857
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7849638501826605
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7491031746031743
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.752516331310788
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6528571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7871428571428571
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8271428571428572
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8771428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6528571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2623809523809524
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1654285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0877142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6528571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7871428571428571
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8271428571428572
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8771428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7639694587103518
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7279750566893419
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7317631790989764
      name: Cosine Map@100
---

# Nomic Embed 1.5 Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision b0753ae76394dd36bcfb912a46018088bca48be0 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("venkateshmurugadas/nomic-v1.5-financial-matryoshka")
# Run inference
sentences = [
    'The company may issue debt or equity securities occasionally to provide additional liquidity or pursue opportunities to enhance its long-term competitive position while maintaining a strong balance sheet. ',
    'What might the company do to increase liquidity or pursue long-term competitive advantages while managing a strong balance sheet?',
    'What types of technologies does the Mortgage Technology segment employ to enhance operational efficiency?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6929     |
| cosine_accuracy@3   | 0.8229     |
| cosine_accuracy@5   | 0.87       |
| cosine_accuracy@10  | 0.9071     |
| cosine_precision@1  | 0.6929     |
| cosine_precision@3  | 0.2743     |
| cosine_precision@5  | 0.174      |
| cosine_precision@10 | 0.0907     |
| cosine_recall@1     | 0.6929     |
| cosine_recall@3     | 0.8229     |
| cosine_recall@5     | 0.87       |
| cosine_recall@10    | 0.9071     |
| cosine_ndcg@10      | 0.803      |
| cosine_mrr@10       | 0.7693     |
| **cosine_map@100**  | **0.7724** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6914     |
| cosine_accuracy@3   | 0.8271     |
| cosine_accuracy@5   | 0.87       |
| cosine_accuracy@10  | 0.9086     |
| cosine_precision@1  | 0.6914     |
| cosine_precision@3  | 0.2757     |
| cosine_precision@5  | 0.174      |
| cosine_precision@10 | 0.0909     |
| cosine_recall@1     | 0.6914     |
| cosine_recall@3     | 0.8271     |
| cosine_recall@5     | 0.87       |
| cosine_recall@10    | 0.9086     |
| cosine_ndcg@10      | 0.803      |
| cosine_mrr@10       | 0.7688     |
| **cosine_map@100**  | **0.7718** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6871     |
| cosine_accuracy@3   | 0.8286     |
| cosine_accuracy@5   | 0.8729     |
| cosine_accuracy@10  | 0.8986     |
| cosine_precision@1  | 0.6871     |
| cosine_precision@3  | 0.2762     |
| cosine_precision@5  | 0.1746     |
| cosine_precision@10 | 0.0899     |
| cosine_recall@1     | 0.6871     |
| cosine_recall@3     | 0.8286     |
| cosine_recall@5     | 0.8729     |
| cosine_recall@10    | 0.8986     |
| cosine_ndcg@10      | 0.7984     |
| cosine_mrr@10       | 0.7656     |
| **cosine_map@100**  | **0.7693** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6671     |
| cosine_accuracy@3   | 0.8186     |
| cosine_accuracy@5   | 0.8557     |
| cosine_accuracy@10  | 0.8957     |
| cosine_precision@1  | 0.6671     |
| cosine_precision@3  | 0.2729     |
| cosine_precision@5  | 0.1711     |
| cosine_precision@10 | 0.0896     |
| cosine_recall@1     | 0.6671     |
| cosine_recall@3     | 0.8186     |
| cosine_recall@5     | 0.8557     |
| cosine_recall@10    | 0.8957     |
| cosine_ndcg@10      | 0.785      |
| cosine_mrr@10       | 0.7491     |
| **cosine_map@100**  | **0.7525** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6529     |
| cosine_accuracy@3   | 0.7871     |
| cosine_accuracy@5   | 0.8271     |
| cosine_accuracy@10  | 0.8771     |
| cosine_precision@1  | 0.6529     |
| cosine_precision@3  | 0.2624     |
| cosine_precision@5  | 0.1654     |
| cosine_precision@10 | 0.0877     |
| cosine_recall@1     | 0.6529     |
| cosine_recall@3     | 0.7871     |
| cosine_recall@5     | 0.8271     |
| cosine_recall@10    | 0.8771     |
| cosine_ndcg@10      | 0.764      |
| cosine_mrr@10       | 0.728      |
| **cosine_map@100**  | **0.7318** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 46.46 tokens</li><li>max: 371 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.45 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anchor                                                                                                |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|
  | <code>We evaluate uncertain tax positions periodically, considering changes in facts and circumstances, such as new regulations or recent judicial opinions, as well as the status of audit activities by taxing authorities.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>How are changes to a company's uncertain tax positions evaluated?</code>                        |
  | <code>During 2022 and 2023, our operating margin was impacted by increased wage rates. During 2022, our gross margin was impacted by higher air freight costs as a result of global supply chain disruption.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <code>What effects did inflation have on the company's operating results during 2022 and 2023?</code> |
  | <code>To mitigate these developments, we are continually working to evolve our advertising systems to improve the performance of our ad products. We are developing privacy enhancing technologies to deliver relevant ads and measurement capabilities while reducing the amount of personal information we process, including by relying more on anonymized or aggregated third-party data. In addition, we are developing tools that enable marketers to share their data into our systems, as well as ad products that generate more valuable signals within our apps. More broadly, we also continue to innovate our advertising tools to help marketers prepare campaigns and connect with consumers, including developing growing formats such as Reels ads and our business messaging ad products. Across all of these efforts, we are making significant investments in artificial intelligence (AI), including generative AI, to improve our delivery, targeting, and measurement capabilities. Further, we are focused on driving onsite conversions in our business messaging ad products by developing new features and scaling existing features.</code> | <code>What technological solutions is the company developing to improve ad delivery?</code>           |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `gradient_accumulation_steps`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 64
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.4063     | 10     | 0.1329        | -                      | -                      | -                      | -                     | -                      |
| 0.8127     | 20     | 0.0567        | -                      | -                      | -                      | -                     | -                      |
| 0.9752     | 24     | -             | 0.7416                 | 0.7604                 | 0.7678                 | 0.7249                | 0.7758                 |
| 1.2190     | 30     | 0.0415        | -                      | -                      | -                      | -                     | -                      |
| 1.6254     | 40     | 0.0043        | -                      | -                      | -                      | -                     | -                      |
| 1.9911     | 49     | -             | 0.7491                 | 0.7648                 | 0.7700                 | 0.7315                | 0.7731                 |
| 2.0317     | 50     | 0.0059        | -                      | -                      | -                      | -                     | -                      |
| 2.4381     | 60     | 0.0045        | -                      | -                      | -                      | -                     | -                      |
| 2.8444     | 70     | 0.0013        | -                      | -                      | -                      | -                     | -                      |
| **2.9663** | **73** | **-**         | **0.7531**             | **0.7703**             | **0.7712**             | **0.7327**            | **0.7738**             |
| 3.2508     | 80     | 0.0031        | -                      | -                      | -                      | -                     | -                      |
| 3.6571     | 90     | 0.0009        | -                      | -                      | -                      | -                     | -                      |
| 3.9010     | 96     | -             | 0.7525                 | 0.7693                 | 0.7718                 | 0.7318                | 0.7724                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->